传感器技术实验指导书

上传人:工**** 文档编号:506457742 上传时间:2023-09-23 格式:DOCX 页数:14 大小:171.07KB
返回 下载 相关 举报
传感器技术实验指导书_第1页
第1页 / 共14页
传感器技术实验指导书_第2页
第2页 / 共14页
传感器技术实验指导书_第3页
第3页 / 共14页
传感器技术实验指导书_第4页
第4页 / 共14页
传感器技术实验指导书_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《传感器技术实验指导书》由会员分享,可在线阅读,更多相关《传感器技术实验指导书(14页珍藏版)》请在金锄头文库上搜索。

1、实验一 应变片式传感器特性实验一、实验目的:1、了解电阻应变片的工作原理与应用并掌握应变片测量电路。2、了解应变片半桥(双臂)工作特点及性能。3、了解应变片全桥工作特点及性能。4、比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。5、了解应变直流全桥的应用及电路的标定。二、基本原理:电阻应变式传感器是在弹性元件上通过特定工艺粘贴电阻应变片来组成。 一种利用电阻材料的应变效应,将工程结构件的内部变形转换为电阻变化的传感器,此类传 感器主要是通过一定的机械装置将被测量转化成弹性元件的变形,然后由电阻应变片将变形 转换成电阻的变化,再通过测量电路进一步将电阻的改变转换成电压或电流信号输出

2、。可用 于能转化成变形的各种非电物理量的检测,如力、压力、加速度、力矩、重量等,在机械加 工、计量、建筑测量等行业应用十分广泛。1、应变片的电阻应变效应所谓电阻应变效应是指具有规则外形的金属导体或半导体材料在外力作用下产生应变 而其电阻值也会产生相应地改变,这一物理现象称为“电阻应变效应”。以圆柱形导体为例: 设其长为:L、半径为r、材料的电阻率为p时,根据电阻的定义式得应=貝 心(1-1)当导体因某种原因产生应变时,其长度L、截面积A和电阻率p的变化为dL、dA、dp相 应的电阻变化为dR。对式(1-1)全微分得电阻变化率dR/R为:式中:dL/L为导体的轴向应变量 t; dr/r为导体的横

3、向应变量Lr由材料力学得:l=-陆r(1-3)式中:M为材料的泊松比,大多数金属材料的泊松比为0.3-0.5左右;负号表示两者的变 化方向相反。将式(1-3)代入式(1-2)得:1-4)式(1-4)说明电阻应变效应主要取决于它的几何应变(几何效应)和本身特有的导电性能 (压阻效应)。2、应变灵敏度 它是指电阻应变片在单位应变作用下所产生的电阻的相对变化量。dR沁1 + 2#) 5(1)、金属导体的应变灵敏度K主要取决于其几何效应;可取1-5)其灵敏度系数为:K=金属导体在受到应变作用时将产生电阻的变化,拉伸时电阻增大,压缩时电阻减小,且 与其轴向应变成正比。金属导体的电阻应变灵敏度一般在2 左

4、右。(2)、半导体的应变灵敏度:主要取决于其压阻效应;dR/Rvdp p半导体材料之所以具有较大的电阻变化率,是因为它有远比金属导体显著得多的压阻效应。在半导体受力变形 时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化, 这种物理现象我们称之为半导体的压阻效应 。且不同材质的半导体材料在不同受力条件下产生的压阻效应不同,可以是正(使电阻增大)的或负(使电阻减小)的压阻效应。也就是 说,同样是拉伸变形,不同材质的半导体将得到完全相反的电阻变化效果。半导体材料的电阻应变效应主要体现为压阻效应,可正可负,与材料性质和应变方向有关,其灵敏度系数较大,一般在100 到 2

5、00 左右。3、贴片式应变片应用在贴片式工艺的传感器上普遍应用金属箔式应变片,贴片式半导体应变片(温漂、稳定 性、线性度不好而且易损坏)很少应用。一般半导体应变采用N型单晶硅为传感器的弹性元 件,在它上面直接蒸镀扩散出半导体电阻应变薄膜(扩散出敏感栅),制成扩散型压阻式(压 阻效应)传感器。本实验以金属箔式应变片为研究对象。4、箔式应变片的基本结构应变片是在用苯酚、环氧树脂等绝缘材料的基板上,粘贴直径为0.025mm左右的金属丝 或金属箔制成,如图1-1 所示。(a) 丝式应变片 (b) 箔式应变片图 1-1 应变片结构图金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,与丝式应变片工

6、作原 理相同。电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应, 描述电阻应变效应的关系式为: R/R=K 式中: R/R为电阻丝电阻相对变化,K 为应变灵敏系数, = L/L为电阻丝长度相对变化。5、测量电路为了将电阻应变式传感器的电阻变化转换成电压或电流信号,在应用中一般采用电桥电 路作为其测量电路。电桥电路具有结构简单、灵敏度高、测量范围宽、线性度好且易实现温 度补偿等优点。能较好地满足各种应变测量要求,因此在应变测量中得到了广泛的应用。电桥电路按其工作方式分有单臂、双臂和全桥三种,单臂工作输出信号最小、线性、稳 定性较差;双臂输出是单臂的两倍,性能比单臂有所改善;

7、全桥工作时的输出是单臂时的四 倍,性能最好。因此,为了得到较大的输出电压或电流信号一般都采用双臂或全桥工作。基 本电路如图1-2 (a)、(b)、(c)所示。(a)单臂(b)半桥(c)全桥图 1-2 应变片测量电路(a)、单臂Uo=U_U =(R4 + R4)/(R4 + AR4 + R3)-R1 /(R1+R2)E=(R1+R2)(R4+R4)-R1 (R3+R4+&4)/(R3+R4+&4)(R1+R2) E 设 R1 = R2 = R3 = R4,且R4/R4=A R/RVV1, R/R=K。则 Uo(l /4)(aR4/R4)E=(1 /4)(aR/R)E=(1 /4)K E(b) 、

8、双臂( 半桥 )同理:Uo(1/2)(aR/R)E=(1/2)K E(C) 、全桥同理:Uo(R/R)E=K e6、箔式应变片单臂电桥实验原理图$Uor差动放大器_4V E +4VO电压表图 1-3 应变片单臂电桥实验原理图R1R2图中R1、R2、R3为350Q固定电阻,R4为应变片;W1和r组成电桥调平衡网络,供 桥电源直流土4V。桥路输出电压 Uo(1/4)(aR4/R4)E=(1/4)(aR/R)E=(1/4)K E。 三、需用器件与单元:机头中的应变梁、振动台;主板中的箔式应变片、电桥、4V电源、差动放大器、F/V电压表、砝码;4十位数显万用表(自备)。2四、需用器件与单元介绍:熟悉需

9、用器件与单元在传感器箱中机头与主板的布置位置(参阅以上说明书二、实验箱组成图)。1、图 1-4 为主板中的电桥单元。图中:菱形虚框为无实体的电桥模型(为实验者组桥参考而设,无其它实际意义) 。R1=R2=R3=350Q是固定电阻,为组成单臂应变和半桥应变 而配备的其它桥臂电阻。W1电位器、r电阻为电桥直流调节平衡网络,W2电位器、C 电容为电桥交流调节平衡网络。W1W2图 1-4 电桥单元2、图 1-5 为主板中的差动放大器单元。图中:左图是原理图。其中: IC1-1 AD620 是差动输入的测量放大器(仪用放大器)IC1-2为调零跟随器。右图为面板图。1 2 3 4益H增亍RW1-I C1-

10、2Vc +15V差动放大器关I川I击开Cl-3-15VVc +15VDl-4立-ki 丄lolIKW12H R1-8 I差动放大器原理图图 1-5 差动放大器原理与面板图五、实验步骤:1、在应变梁自然状态(不受力)的情况下,用4十位数显万用表2kQ电阻档测量所有2应变片阻值;在应变梁受力状态(用手压、提振动台)的情况下,测应变片阻值,观察一下应变片阻值变化情况(标有上下箭头的 4 片应变片纵向受力阻值有变化;标有左右箭头的 2片应变片横向不受力阻值无变化,是温度补偿片)。如下图 1-6 所示。r14(1/2)位 数显万用表 2k电阻档测阻值L图 1-6 观察应变片阻值变化情况示意图2、差动放大

11、器调零点:按图1-7示意接线。将F/V表的量程切换开关切换到2V档,合上实验箱主电源开关,将差动放大器的拨动开关拨到“开”位置,将差动放大器的增益电位器按顺时针方向轻轻转到底后再逆向回转半圈,调节调零电位器,使电压表显示电压为零。差动放大器的零点调节完成,关闭主电源。差动放大器 关匚皿开调零增益图 1-7 差放调零接线图3、应变片单臂电桥特性实验:将主板上传感器输出单元中的箔式应变片(标有上下箭头的4片应变片中任意一片为 工作片)与电桥单元中Ri、R2、R3组成电桥电路,电桥的一对角接4V直流电源,另一对角 作为电桥的输出接差动放大器的二输入端,将 W1 电位器、 r 电阻直流调节平衡网络接入

12、电 桥中(Wi电位器二固定端接电桥的4V电源端、Wi的活动端r电阻接电桥的输出端),如图i-8 示意接线(粗细曲线为连接线)。图 i-8 应变片单臂电桥特性实验接线示意图检查接线无误后合上主电源开关,在机头上应变梁的振动台无砝码时调节电桥的直流 调节平衡网络W1电位器,使电压表显示为0或接近0(有小的起始电压也无所谓,不影响应 变片特性与实验)。在应变梁的振动台中心点上放置一只砝码(20g/只),读取数显表数值,依次增加砝码和读取相应的数显表值,记下实验数据填入表1-1。表 1-1 应变片单臂电桥特性实验数据重量(g)电压(mV)根据表1-1数据计算系统灵敏度S=a V/a W( V输出电压变

13、化量, W重量变化量) 和非线性误差&,& = m/yFS X100%式中 m为输出值(多次测量时为平均值)与拟合直 线的最大偏差:yFS满量程输出平均值,此处为200g。实验完毕,关闭电源。4、应变片双臂电桥特性实验:除实验接线按图1-9接线即电桥单元中Ri、R2与相邻的二片应变片组成电桥电路外。实验步骤和实验数据处理方法与实验一完全相同。实验完毕,关闭电源。图 1-9 应变式传感器半桥接线示意图表 1-2 应变片双臂电桥特性实验数据除实验接线按图 1-10接线,四片应变片组成电桥电路外。实验步骤和实验数据处理方 法与实验一完全相同。实验完毕,关闭电源。表 1-3 应变片全桥特性实验数据重量

14、(g)电压(mV)图 1-10 应变片全桥特性实验接线示意图6、应变直流全桥的应用电子秤实验:常用的称重传感器就是应用了箔式应变片及其全桥测量电路。数字电子秤实验原理如图1-11。本实验只做放大器输出Vo实验,通过对电路的标定使电路输出的电压值为重量对应 值,电压量纲(V)改为重量量纲(g)即成为图 1-11 数字电子称原理框图台原始电子秤。(1)差动放大器调零点:按图1-12示意接线。将F/V表的量程切换开关切换到2V 档,合上实验箱主电源开关,将差动放大器的拨动开关拨到“开”位置,将差动放大器的增 益电位器按顺时针方向轻轻转到底后再逆向回转半圈,调节调零电位器,使数显表显示 0.000V。差动放大器的零点调节完成,关闭主电源。差动放大器 关匚皿开调零增益图 1-12 差放调零接线图(2)按图1-13 接线,检查接线无误后合上主电源开关。在振动台无砝码时,调节电桥中的W1电位器,使数显表显示为0.000V。将10只硅码全部置于振动台上(尽量放在中心点),调节差动放大器的增益电位器,使数显表显示为0.200V(2V档测量)或一0.200V。图 1-13 电子秤实验接线示意图(3)拿去振动台上的所有硅码,如数显电压表不显示0.000V则调节差动放大器的调零 电位器,使数显表显示为0.000V。再将10只硅码全部置于振动台上(尽量放在中心点), 调节差动放大器的增益电位器

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号