电压数据采集系统课程设计

上传人:汽*** 文档编号:494717161 上传时间:2023-08-18 格式:DOC 页数:29 大小:695.01KB
返回 下载 相关 举报
电压数据采集系统课程设计_第1页
第1页 / 共29页
电压数据采集系统课程设计_第2页
第2页 / 共29页
电压数据采集系统课程设计_第3页
第3页 / 共29页
电压数据采集系统课程设计_第4页
第4页 / 共29页
电压数据采集系统课程设计_第5页
第5页 / 共29页
点击查看更多>>
资源描述

《电压数据采集系统课程设计》由会员分享,可在线阅读,更多相关《电压数据采集系统课程设计(29页珍藏版)》请在金锄头文库上搜索。

1、引言2一 设计思路21.1单片机与PC机的串口通信212 数据采集系统的结构原理2121 数据采集系统的分类3122 数据采集系统的基本功能3123 数据采集系统的结构形式3二 数据采集系统设计的基本原则421 硬件设计的基本原则422 软件设计的基本原则4三 芯片介绍53.1 At89s5153.2 AD080993.3 ADC1674113.4 MAX7221133.5 MAX232143.6 2864153.7 6264153.8 74LS37316四 硬件电路174.1数据采集电路174.2数据存储电路174.3 数据显示电路184.4串口电路184.5电源电路194.6复位电路194

2、.7 晶振电路19五,软件设计20六 心得体会24参考文献25附录25protel原理图25proteus仿真图25PCB板25实物图25引言在计算机控制系统中,数据采集是必不可少的一个组成部分,一个好的数据采集系统应具有多路数据采集功能、数据处理能力强、数据存贮量大、控制界面美观且易于操作等特点。传统的单片机数据采集控制系统,数据存贮量小,控制界面简单,图表的显示、打印等不易实现。本文以ADC0809的低成本数据采集器设计为实例,分析了Windows环境下串行通信的基础上,详解数据采集系统中PC机与单片机串行通信协议和数据块的发送与接收具体讲解了PC机和单片机串口通信在数据采集系统中的应用。

3、系统采用可视化的编程语言C+实现单片机和PC机之间的通信。一 设计思路 数据采集是指从传感器和其他待测设备中自动采集模拟或数字信号电量或非电量信号送入控制器中进行分析和数据处理。本设计采用单路模拟信号(温度)的数据采集。设计思路为:通过滑动变阻器采集电压信号,经运算放大器OP07放大后送入模数转换器ADC0809在单片机的控制下进行模数转换,每次转换结束后,单片机在控制电路的作用下将数据读走存入片外存储器。而单片机则需要将收到的数据送入PC机中进行相应处理。单片机与PC间的数据通信方式为串口通信协议RS,通过芯片MAX进行电平匹配。1.1单片机与PC机的串口通信采用RS232串口通信协议。利用

4、MAX232实现TTL到RS电平间的转换。12 数据采集系统的结构原理 数据采集系统一般包括模拟信号的输入输出通道和数字信号的输入输出通道。数据采集系统的输入又称为数据的收集;数据采集系统的输出又称为数据的分配。 121 数据采集系统的分类 数据采集系统的结构形式多种多样,用途和功能也各不相同,常见的分类方法有以下几种:根据数据采集系统的功能分类:数据收集和数据分配;根据数据采集系统适应环境分类:隔离型和非隔离型,集中式和分布式,高速、中速和低速型;根据数据采集系统的控制功能分类:智能化数据采集系统,非智能化数据采集系统;根据模拟信号的性质分类:电压信号和电流信号,高电平信号和低电平信号,单端

5、输入(SE)和差动输入(DE),单极性和双极性;根据信号通道的结构方式分类:单通道方式,多通道方式。 122 数据采集系统的基本功能 数据采集系统的任务,具体地说,就是采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机,根据不同的需要由计算机进行相应的计算和处理,得出所需的数据。与此同时,将计算得到的数根进行显显示和打印,以便文现对某些物理量的监视。由数据采集系统的任务可以知道,数据采集系统具有以下几方面的功能:数据采集、模拟信号处理、数字信号处理、开关信号处理、二次数据计算、屏幕显示、数据存储、打印输出、人机联系。 123 数据采集系统的结构形式 从硬件力向来看,白前数据

6、采集系统的结构形式主要有两种:一种是微型计算机数据采集系统;另一种是集散型数据采集系统。 微型计算机数据采集系统是由传感器、模拟多路开关、程控放大器、采样/保持器、AD转换器、计算机及外设等部分组成。集散型数据采集系统是计算机网络技术的产物,它由十个“数据采集站”和一台上位机及通信线路组成。数据采集站一般是由单片机数据采集装置组成。位于生产设备附近,可独立完成数据采集和颈处理任务,还可将数据以数字信号的形式传送给上位机。 二 数据采集系统设计的基本原则 对于不同的采集对象,系统设计的具体要求是不相同的。但是,由于数据采集系统是由硬件和软件两部分组成的,因此,系统设计的一些基本原则是大体相同的。

7、 21 硬件设计的基本原则 (1) 经济合理 系统硬件设计中,一定要注意在满足件能指标的前提下,尽可能地降低价格,以便得到高的性能价格比,这是硬件设计中优先考虑的一个主要因素,也是一个产品争取市场的主要因素之一。 (2) 安全可靠 选购设备要考虑环境的温度、湿度、压力、振动、粉尘等要求,以保认在规定的下作环境下,系统性能稳定、工作可靠。要有超量程和过载保护,保证输入、输出通道正常工作。要注意对交流市电以及电火花等的隔离。要保证连接件的接触可靠。 (3) 足够的抗干扰能力 有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。 22 软件设计的基本原则 (1) 结构合理 程序应该采

8、用结构模块化设计。这不仅有利于程序的进一步扩充,而且也有利于程序的修改和维护。在程序编序时,要尽量使得程序的层次分明,易于阅读和理解,同时还可以简化程序,减少程序对于内存的使用量。当程序中有经常需要加以修改或变化的参数时,应该设计成独立的参数传递群序,避免程序的频繁修改。 (2) 操作性能好 操作件能好是指使用方便。这点对数据采集系统来说是很重要的。在开发程序时,应该考虑如何降低对操作人员专业知识的要求。 (3) 系统应设计一定的检测程序,例如状态检测利诊断程序,以便系统发生故障时容易确定故障部位,对于重要的参数要定时存储,以防止因掉电而丢失数据。 (4) 提高程序的执行速度。 (5) 给出必

9、要的程序说明。三 芯片介绍3.1 At89s51AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4K的可编程的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片机芯片中,ATMEL公司的功能强大,低价位AT89S51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。主要性能参数:l 与MCS-51产品指令系统完全兼容l 4K字节在系统编程(ISP)Flash 闪速存储器l 1000次擦写周期l

10、4.0-5.5V的工作电压范围l 全静态工作模式:0HZ-33MHZl 三级程序加密锁l 128*8字节内部RAMl 32个可编程I/O口线l 2个16位定时/计数器l 6个中断源l 全双工串行UART通道l 低功耗空闲和掉电模式l 中断可从空闲模式唤醒系统l 看门狗(WDT)及双数据指针l 掉电标示和快速编程特性l 灵活的在系统编程(ISP-字节或页写模式)功能特性概述: AT89S51提供以下标准功能:4K字节闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,

11、AT89S51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中到内容,但振荡器停止工作并禁止其它所有工作部件直到下一个硬件复位。引脚功能说明:Vcc:电源电压GND:地P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口时,每位能驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash编程时,P0口接收指令字节,而在程序

12、校验时,输出指令字节,校验时,要求外接上拉电阻。P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作为输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。Flash编程和程序校验期间,P1接收低8位地址。P2口:P2口是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输出口,作输入口使用时,因为内部存在上拉电阻,某个引

13、脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVE DPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(如执行MOVX Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2亦接收高位地址和其他控制信号。P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输出端口。作输入端时,被外部拉低的P3口将用上拉电阻输出电流(

14、IIL)。P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如下表所示:P3口还接手一些用于Flash闪速存储器编程和程序校验的控制信号。RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。WDT溢出将使该引脚输出高电平,设置SFR AUXR的DISRTO位(地址8EH)可打开或关闭该功能。DISRTO位缺省为RESET输出高电平打开状态。ALE/PROG:当访问外部程序存储器或数据存储器时,ALE(地址所存允许)输出脉冲用于所存地址的低8位字节。即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定

15、时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC指令ALE才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。PSEN:程序储存允许(PSEN)输出是外部程序存储器的选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。当访问外部数据存储器,没有两次有效的PSEN信号。EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000H-FFFFH),EA端必须保持低电平(接地)。需要注意的是:如果加密位LB1被编程,复位时内部会所存EA端状态。如EA端为高电平(接VCC端),CPU则执行内部程序存储器中的指令。Flash存储器编程时,该引脚加上+12V的编程电压VPP。XTAL1

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号