《【名校精品】高考数学人教A版理科含答案导学案【第四章】三角函数、解三角形 学案22》由会员分享,可在线阅读,更多相关《【名校精品】高考数学人教A版理科含答案导学案【第四章】三角函数、解三角形 学案22(10页珍藏版)》请在金锄头文库上搜索。
1、名校精品资料数学学案22简单的三角恒等变换导学目标: 1.能推出二倍角的正弦、余弦、正切公式,并熟练应用.2.能运用两角和与差的三角公式进行简单的恒等变换自主梳理1二倍角的正弦、余弦、正切公式(1)sin 2_;(2)cos 2_11_;(3)tan 2_ (且k)2公式的逆向变换及有关变形(1)sin cos _cos ;(2)降幂公式:sin2_,cos2_;升幂公式:1cos _,1cos _;变形:1sin 2sin2cos22sin cos _.自我检测1(2010陕西)函数f(x)2sin xcos x是 ()A最小正周期为2的奇函数B最小正周期为2的偶函数C最小正周期为的奇函数D
2、最小正周期为的偶函数2函数f(x)cos 2x2sin x的最小值和最大值分别为 ()A3,1B2,2C3,D2,3函数f(x)sin xcos x的最小值是 ()A1BC.D14(2011清远月考)已知A、B为直角三角形的两个锐角,则sin Asin B ()A有最大值,最小值0B有最小值,无最大值C既无最大值也无最小值D有最大值,无最小值探究点一三角函数式的化简例1求函数y74sin xcos x4cos2x4cos4x的最大值和最小值变式迁移1(2011泰安模拟)已知函数f(x).(1)求f的值;(2)当x时,求g(x)f(x)sin 2x的最大值和最小值探究点二三角函数式的求值例2已知
3、sin(2)sin(2),(,),求2sin2tan 1的值变式迁移2(1)已知是第一象限角,且cos ,求的值(2)已知cos(),求cos(2)的值探究点三三角恒等式的证明例3(2011苏北四市模拟)已知sin(2)3sin ,设tan x,tan y,记yf(x)(1)求证:tan()2tan ;(2)求f(x)的解析表达式;(3)若角是一个三角形的最小内角,试求函数f(x)的值域变式迁移3求证:.转化与化归思想的应用例(12分)(2010江西)已知函数f(x)sin2xmsinsin.(1)当m0时,求f(x)在区间上的取值范围;(2)当tan 2时,f(),求m的值【答题模板】解(1
4、)当m0时,f(x)sin2xsin2xsin xcos x,3分由已知x,得2x,4分所以sin,5分从而得f(x)的值域为.6分(2)f(x)sin2xsin xcos xcos 2xsin 2xcos 2xsin 2x(1m)cos 2x,8分由tan 2,得sin 2,cos 2.10分所以,11分解得m2.12分【突破思维障碍】三角函数式的化简是指利用诱导公式、同角基本关系式、和与差的三角函数公式、二倍角公式等,将较复杂的三角函数式化得更简洁、更清楚地显示出式子的结果化简三角函数式的基本要求是:(1)能求出数值的要求出数值;(2)使三角函数式的项数最少、次数最低、角与函数的种类最少;
5、(3)分式中的分母尽量不含根式等1求值中主要有三类求值问题:(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系(3)“给值求角”:实质是转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角2三角恒等变换的常用方法、技巧和原则:(1)在化简求值和证明时常用如下方法:切割化弦法,升幂降幂法,
6、和积互化法,辅助元素法,“1”的代换法等(2)常用的拆角、拼角技巧如:2()(),(),(),是的二倍角等(3)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式消除差异:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构等方面的差异 (满分:75分)一、选择题(每小题5分,共25分)1(2011平顶山月考)已知0,3sin 2sin ,则cos()等于 ()A.BC.D2已知tan(),tan,那么tan等于 ()A.B.C.D.3(2011石家庄模拟)已知cos 2 (其中),则sin 的值为 ()A.BC
7、.D4若f(x)2tan x,则f的值为 ()AB8C4D45(2010福建厦门外国语学校高三第二次月考)在ABC中,若cos 2B3cos(AC)20,则sin B的值是 ()A.B.C.D1题号12345答案二、填空题(每小题4分,共12分)6(2010全国)已知为第二象限的角,且sin ,则tan 2_.7函数y2cos2xsin 2x的最小值是_8若,则cos sin 的值为_三、解答题(共38分)9(12分)化简:(1)cos 20cos 40cos 60cos 80;(2).10(12分)(2011南京模拟)设函数f(x)sin xcos xcos xsin.(1)求f(x)的最小
8、正周期;(2)当时,求函数f(x)的最大值和最小值11(14分)(2010北京)已知函数f(x)2cos 2xsin2x4cos x.(1)求f()的值;(2)求f(x)的最大值和最小值答案 自主梳理1(1)2sin cos (2)cos2sin22cos22sin2(3)2.(1)sin 2(2)2cos22sin2(sin cos )2自我检测1C2.C3.B4.D课堂活动区例1解题导引化简的原则是形式简单,三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值本题要充分利用倍角公式进行降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键解y74sin xcos x4cos
9、2x4cos4x72sin 2x4cos2x(1cos2x)72sin 2x4cos2xsin2x72sin 2xsin22x(1sin 2x)26,由于函数z(u1)26在1,1中的最大值为zmax(11)2610,最小值为zmin(11)266,故当sin 2x1时,y取得最大值10,当sin 2x1时,y取得最小值6.变式迁移1解(1)f(x)2cos 2x,f2cos2cos .(2)g(x)cos 2xsin 2xsin.x,2x,当x时,g(x)max,当x0时,g(x)min1.例2解题导引(1)这类问题一般是先化简再求值;化简后目标更明确;(2)如果能从已知条件中求出特殊值,应
10、转化为特殊角,可简化运算,对切函数通常化为弦函数解由sin(2)sin(2)sin(2)cos(2)sin(4)cos 4,cos 4,又(,),故,2sin2tan 1cos 2cos 2cos.变式迁移2解(1)是第一象限角,cos ,sin .(2)cos(2)cos 2cossin 2sin(cos 2sin 2),0,故可知,sin(),从而cos 2sin(2)2sin()cos()2().sin 2cos(2)12cos2()12()2.cos(2)(cos 2sin 2)().例3解题导引本题的关键是第(1)小题的恒等式证明,对于三角恒等式的证明,我们要注意观察、分析条件恒等式
11、与目标恒等式的异同,特别是分析已知和要求的角之间的关系,再分析函数名之间的关系,则容易找到思路证明三角恒等式的实质就是消除等式两边的差异,有目的地化繁为简,左右归一或变更论证对于第(2)小题同样要从角的关系入手,利用两角和的正切公式可得关系第(3)小题则利用基本不等式求解即可(1)证明由sin(2)3sin ,得sin()3sin(),即sin()cos cos()sin 3sin()cos 3cos()sin ,sin()cos 2cos()sin ,tan()2tan .(2)解由(1)得2tan ,即2x,y,即f(x).(3)解角是一个三角形的最小内角,0,0x,设g(x)2x,则g(x)2x2(当且仅当x时取“”)故函数f(x)的值域为(0,变式迁移3证明因为左边右边所以原等式成立课后练习区1