RS485芯片介绍及典型应用电路

上传人:壹****1 文档编号:491745197 上传时间:2023-01-28 格式:DOC 页数:6 大小:91KB
返回 下载 相关 举报
RS485芯片介绍及典型应用电路_第1页
第1页 / 共6页
RS485芯片介绍及典型应用电路_第2页
第2页 / 共6页
RS485芯片介绍及典型应用电路_第3页
第3页 / 共6页
RS485芯片介绍及典型应用电路_第4页
第4页 / 共6页
RS485芯片介绍及典型应用电路_第5页
第5页 / 共6页
点击查看更多>>
资源描述

《RS485芯片介绍及典型应用电路》由会员分享,可在线阅读,更多相关《RS485芯片介绍及典型应用电路(6页珍藏版)》请在金锄头文库上搜索。

1、一、RS485基本知识RS-485接口芯片已广泛应用于工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域。可用于RS-485接口的芯片种类也越来越多。如何在种类繁多的接口芯片中找到最合适的芯片,是摆在每一个使用者面前的一个问题。RS-485接口在不同的使用场合,对芯片的要求和使用方法也有所不同。使用者在芯片的选型和电路的设计上应考虑哪些因素,由于某些芯片的固有特性,通信中有些故障甚至还需要在软件上作相应调整,如此等等。希望本文对解决RS-485接口的某些常见问题有所帮助。1RS-485接口标准传输方式:差分传输介质:双绞线标准节点数:32最远通信距离:1200m共模电压最大、最小值:+

2、12V;-7V差分输入范围:-7V+12V接收器输入灵敏度:+200mV接收器输入阻抗:12kQ2节点数及半双工和全双工通信2.1节点数所谓节点数,即每个RS-485接口芯片的驱动器能驱动多少个标准RS-485负载。根据规定,标准RS-485接口的输入阻抗为12k0相应的标准驱动节点数为32o为适应更多节点的通信场合,有些芯片的输入阻抗设计成1/2负载(24kQ)、1/4负载(48kQ)甚至1/8负载(96kQ),相应的节点数可增加到64、128和256。表1为一些常见芯片的节点数。表1节点数型号32SN75176,SN75276,SN75179,SN75180,MAX485,MAX488.M

3、AX49064SN75LBC184128MAX487,MAX1487256MAX1482、MAX1483、MAX3080MAX30892.2半双工和全双工RS-485接口可连接成半双工和全双工两种通彳t方式。半双工通信的芯片有SN75176、SN75276、SN75LBC184、MAX485、MAX1487、MAX3082、MAX1483等;全双工通信的芯片有SN75179、SN75180、MAX488MAX491、MAX1482等。(a)半双工通信电路(b)全双工通信电路3应用中的常见问题3.1 抗雷击和抗静电冲击RS-485接口芯片在使用、焊接或设备的运输途中都有可能受到静电的冲击而损坏。

4、在传输线架设于户外的使用场合,接口芯片乃至整个系统还有可能遭致雷电的袭击。选用抗静电或抗雷击的芯片可有效避免此类损失,常见的芯片有MAX485E、MAX487E、MAX1487E等。特别值得一提的是SN75LBC184,它不但能抗雷电的冲击而且能承受高达8kV的静电放电冲击,是目前市场上不可多得的一款产品。3.2 限斜率驱动由于信号在传输过程中会产生电磁干扰和终端反射,使有效信号和无效信号在传输线上相互迭加,严重时会使通信无法正常进行。为解决这一问题,某些芯片的驱动器设计成限斜率方式,使输出信号边沿不要过陡,以不致于在传输线上产生过多的高频分量,从而有效地扼制干扰的产生。如MAX487、SN7

5、5LBC184等都具有此功能。3.3 故障保护故障保护技术是近两年产生的,一些新的RS-485芯片都采用了此项技术,如SN75276、MAX3080MAX3089。什么是故障保护,为什么要有故障保护,如果没有故障保护会产生什么后果?众所周知,RS-485接口采用的是一种差分传输方式,各节点之间的通信都是通过一对(半双工)或两对(全双工)双绞线作为传输介质。根据RS-485的标准规定,接收器的接收灵敏度为i200mV,即接收端的差分电压大于、等于+200mV时,接收器输出为高电平;小于、等于-200mV时,接收器输出为低电平;介于i200mV之间时,接收器输出为不确定状态。在总线空闲即传输线上所

6、有节点都为接收状态以及在传输线开路或短路故障时,若不采取特殊措施,则接收器可能输出高电平也可能输出低电平。一旦某个节点的接收器产生低电平就会使串行接收器(UART)找不到起始位,从而引起通信异常,解决此类问题的方法有两种:(1)使用带故障保护的芯片,它会在总线开路、短路和空闲情况下,使接收器的输出为高电平。确保总线空闲、短路时接收器输出高电平是由改变接收器输入门限来实现的。例如,MAX3080MAX3089输入灵敏度为-50mV/-200mV,即差分接收器输入电压UA-B-50mV时,接收器输出逻辑高电平;如果UA-B4200mV,则输出逻辑低电平。当接收器输入端总线短路或总线上所有发送器被禁

7、止时,接收器差分输入端为0V,从而使接收器输出高电平。同理,SN75276的灵敏度为0mV/-300mV,因而达到故障保护的目的。(2)若使用不带故障保护的芯片,如SN75176、MAX1487等时,可在软件上作一些处理,从而避免通信异常。即在进入正常的数据通信之前,由主机预先将总线驱动为大于+200mV,并保持一段时间,使所有节点的接收器产生高电平输出。这样,在发出有效数据时,所有接收器能够正确地接收到起始位,进而接收到完整的数据。3.4 光电隔离在某些工业控制领域,由于现场情况十分复杂,充分考虑现场的复杂环境,在电路设计中注意了以下三个问题。RS485应用设计1SN75176485芯片DE

8、控制端的设计由于应用系统中,主机与分机相隔较远,通信线路的总长度往往超过400米,而分机系统上电或复位又常常不在同一个时刻完成。如果在此时某个75176的DE端电位为1”,那么它的485总线输出将会处于发送状态,也就是占用了通信总线,这样其它的分机就无法与主机进行通信。这种情况尤其表现在某个分机出现异常情况下(死机),会使整个系统通信崩溃。因此在电路设计时,应保证系统上电复位时75176的DE端电位为“0由于8031在复位期0,I/O口输出高电平,故图2电路的接法有效地解决复位期间分机咬”总线的问题。2隔离光耦电路的参数选取在应用系统中,由于要对现场情况进行实时监控及响应,通信数据的波特率往往

9、做得较高(通常都在4800波特以上)。限制通信波特率提高的瓶颈”,并不是现场的导线(现场施工一月使用5类非屏蔽的双绞线),而是在与单片机系统进行信号隔离的光耦电路上。此处采用TIL117o电路设计中可以考虑采用高速光耦,如6N137、6N136等芯片,也可以优化普通光耦电路参数的设计,使之能工彳在最佳状态。例如:电阻R2、R3如果选取得较大,将会使光耦的发光管由截止进入饱和变得较慢;如果选取得过小,退出饱和也会很慢,所以这两只电阻的数值要精心选取,不同型号的光耦及驱动电路使得这两个电阻的数值略有差异,这一点在电路设计中要特别慎重,不能随意,通常可以由实验来定。3485总线输出电路部分的设计输出

10、电路的设计要充分考虑到线路上的各种干扰及线路特性阻抗的匹配。由于工程环境比较复杂,现场常有各种形式的干扰源,所以485总线的传输端一定要加有保护措施。在电路设计中采用稳压管D1、D2组成的吸收回路,也可以选用能够抗浪涌的TVS瞬态杂波抑制器件,或者直接选用能抗雷击的485芯片(如SN75LBC184等)。考虑到线路的特殊情况(如某一台分机的485芯片被击穿短路),为防止总线中其它分机的通信受到影响,在75176的485信号输出端串联了两个20Q的电阻R10、R11。这样本机的硬件故障就不会使整个总线的通信受到影响。在应用系统工程的现场施工中,由于通信载体是双绞线,它的特性阻抗为120Q左右,所

11、以线路设计时,在RS-485网络传输线的始端和末端各应接1只120Q的匹配电阻(如图1中R8),以减少线路上传输信号的反射。由于RS-485芯片的特性,接收器的检测灵敏度为200mV,即差分输入端VAVB)+200mV,输出逻辑1,VA-VB-200mV,输出逻辑0;而A、B端电位差的绝对值小于200mV时,输出为不确定。如果在总线上所有发送器被禁止时,接收器输出逻辑0,这会误认为通信帧的起始引起工作不正常。解决这个问题的办法是人为地使A端电位高于B两端电位,这样RXD的电平在485总线不发送期间(总线悬浮时)呈现唯一的高电平,8031单片机就不会被误中断而收到乱字符。通过在485电路的A、B

12、输出端加接上拉、下拉电阻R7、R9,即可很好地解决这个问题用图1RS485应用典型电路三、软件的编程485芯片的软件编程对产品的可靠性也有很大影响。由于485总线是异步半双工的通信总线,在某一个时刻,总线只可能呈现一种状态,所以这种方式一般适用于主机对分机的查询方式通信,总线上必然有一台始终处于主机地位的设备在巡检其它的分机,所以需要制定一套合理的通信协议来协调总线的分时共用。这里采用的是数据包通信方式。通信数据是成帧成包发送的,每包数据都有引导码、长度码、地址码、命令码、内容、校验码等部分组成。其中引导码是用于同步每一包数据的引导头;长度码是这一包数据的总长度;命令码是主机对分机(或分机应答主机)的控制命令;地址码是分机的本机地址号;内容”是这一包数据里的各种信息;校验码是这一包数据的校验标志,可以采用奇偶校验、和校验等不同的方在485芯片的通信中,尤其要注意对485控制端DE的软件编程。为了可靠的工作,在485总线状态切换时需要做适当延时,再进行数据的收发。具体的做法是在数据发送状态下,先将控制端置“1;延时1ms左右的时间,再发送有效的数据,一包数据发送结束后再延时1ms后,将控制端置“0这样的处理会使总线在状态切换时,有一个稳定的工作过程。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 演讲稿/致辞

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号