固体力学发展及分支

上传人:m**** 文档编号:490204831 上传时间:2023-11-14 格式:DOCX 页数:9 大小:24.21KB
返回 下载 相关 举报
固体力学发展及分支_第1页
第1页 / 共9页
固体力学发展及分支_第2页
第2页 / 共9页
固体力学发展及分支_第3页
第3页 / 共9页
固体力学发展及分支_第4页
第4页 / 共9页
固体力学发展及分支_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《固体力学发展及分支》由会员分享,可在线阅读,更多相关《固体力学发展及分支(9页珍藏版)》请在金锄头文库上搜索。

1、固体力学固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固 体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、 应变以及破坏等的规律。固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。 在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料 力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩 地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、 桥梁、水坝

2、、原子反应堆以及日用家具,其结构设计和计算都应用了固体力学的原理和计算 方法。由于工程范围的不断扩大和科学技术的迅速发展,固体力学也在发展,一方面要继承传 统的有用的经典理论,另一方面为适应各们现代工程的特点而建立新的理论和方法。固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。薄壁杆 件是指长宽厚尺寸都不是同量级的固体物件。在飞行器、船舶和建筑等工程结构中都广泛采 用了薄壁杆件。固体力学的发展历史萌芽时期远在公元前二千多年前,中国和世界其他文明古国就开始建造有力学思想的建 筑物、简单的车船和狩猎工具等。中国在隋开皇中期(公元591599年)建造的赵州石拱桥, 已蕴含了近代

3、杆、板、壳体设计的一些基本思想。随着实践经验的积累和工艺精度的提高,人类在房屋建筑、桥梁和船舶建造方面都不断 取得辉煌的成就,但早期的关于强度计算或经验估算等方面的许多资料并没有流传下来。尽 管如此,这些成就还是为较早发展起来的固体力学理论,特别是为后来划归材料力学和结构 力学那些理论奠定了基础。发展时期实践经验的积累和17世纪物理学的成就,为固体力学理论的发展准备了条件。在18世纪,制造大型机器、建造大型桥梁和大型厂房这些社会需要,成为固体力学发展的 推动力。这期间,固体力学理论的发展也经历了四个阶段:基本概念形成的阶段;解决特殊问题 的阶段;建立一般理论、原理、方法、数学方程的阶段;探讨复

4、杂问题的阶段。在这一时期, 固体力学基本上是沿着研究弹性规律和研究塑性规律,这样两条平行的道路发展的,而弹性规律的研究开始较早。弹性固体的力学理论是在实践的基础上于17世纪发展起来的。英国的胡克于1678年 提出:物体的变形与所受外载荷成正比,后称为胡克定律;瑞士的雅各布第一 伯努利在17 世纪末提出关于弹性杆的挠度曲线的概念;而丹尼尔第一 伯努利于18世纪中期,首先导 出棱柱杆侧向振动的微分方程;瑞士的欧拉于1744年建立了受压柱体失稳临界值的公式, 又于1 757年建立了柱体受压的微分方程,从而成为第一个研究稳定性问题的学者;法国的 库仑在1 773年提出了材料强度理论,他还在1784年研

5、究了扭转问题并提出剪切的概念。 这些研究成果为深入研究弹性固体的力学理论奠定了基础。法国的纳维于1820年研究了薄板弯曲问题,并于次年发表了弹性力学的基本方程;法 国的柯西于1 822年给出应力和应变的严格定义,并于次年导出矩形六面体微元的平衡微分 方程。柯西提出的应力和应变概念,对后来数学弹性理论,乃至整个固体力学的发展产生了 深远的影响。法国的泊阿松于1 829年得出了受横向载荷平板的挠度方程;1 855年,法国的圣维南 用半逆解法解出了柱体扭转和弯曲问题,并提出了有名的圣维南原理;随后,德国的诺伊曼 建立了三维弹性理论,并建立了研究圆轴纵向振动的较完善的方法;德国的基尔霍夫提出粱 的平截

6、面假设和板壳的直法线假设,他还建立了板壳的准确边界条件并导出了平板弯曲方 程;英国的麦克斯韦在19世纪50年代,发展了光测弹性的应力分析技术后,又于1864 年对只有两个力的简单情况提出了功的互等定理,随后,意大利的贝蒂于1 872年对该定理 加以普遍证明;意大利的卡斯蒂利亚诺于1873年提出了卡氏第一和卡氏第二定理;德国的 恩盖塞于1884年提出了余能的概念。德国的普朗特于1903年提出了解扭转问题的薄膜比拟法;铁木辛柯在20世纪初,用 能量原理解决了许多杆板、壳的稳定性问题;匈牙利的卡门首先建立了弹性平板非线性的基 本微分方程,为以后研究非线性问题开辟了道路。苏联的穆斯赫利什维利于1 93

7、3年发表了弹性力学复变函数方法;美国的唐奈于同一年研究了圆柱形壳在扭力作用下的稳定性问题,并在后来建立了唐奈方程;弗吕格于1932年和1 934年发表了圆柱形薄壳的稳定性和弯曲的研究成果;苏联的符拉索夫在1940年 前后建立了薄壁杆、折板系、扁壳等二维结构的一般理论。在飞行器、舰艇、原子反应堆和大型建筑等结构的高精度要求下,有很多学者参加了力 学研究工作,并解决了大量复杂问题。此外,弹性固体的力学理论还不断渗透到其他领域, 如用于纺织纤维、人体骨骼、心脏、血管等方面的研究。1 773年库仑提出土的屈服条件,这是人类定量研究塑性问题的开端。1864年特雷斯 卡在对金属材料研究的基础上,提出了最大

8、剪应力屈服条件,它和后来德国的光泽斯于 1913年提出的最大形变比能屈服条件,是塑性理论中两个最重要的屈服条件。19世纪60 年代末、70年代初,圣维南提出塑性理论的基本假设,并建立了它的基本方程,他还解决 了一些简单的塑性变形问题。现代固体力学时期指的是第二次世界大战以后的时期,这个时期固体力学的发展有两个 特征:一是有限元法和电子计算机在固体力学中得到广泛应用;二是出现了两个新的分支 断裂力学和复合材料力学。特纳等人于1956年提出有限元法的概念后,有限元法发展很快,在固体力学中大量应 用,解决了很多复杂的问题。结构物体总是存在裂纹,这促使人们去探讨裂纹尖端的应力和应变场以及裂纹的扩展规律

9、。 早在20年代,格里菲思首先提出了玻璃的实际强度取决于裂纹的扩展应力这一重要观点。欧文于1957年提出应力强度因子及其临界值概念,用以判别裂纹的扩展,从此诞生了断裂 力学。纤维增强复合材料力学发端于20世纪50年代。复合材料力学研究有宏观、细观和微 观三个方向。固体力学各分支所形成的基本概念和力学理论一般仍能应用于复合材料,只是 增加了一些新的力学内容,如要考虑非均匀性、各向异性、层间剥离等。复合材料力学是年 轻学科,但发展迅速,它解决了大量传统材料难于胜任的结构问题。固体力学的分支学科材料力学是固体力学中最早发展起来的一个分支,它研究材料在外力作用下的力学性 能、变形状态和破坏规律,为工程

10、设计中选用材料和选择构件尺寸提供依据。它研究的对象 主要是杆件,包括直杆、曲杆(如挂钩、拱)和薄壁杆等,但也涉及一些简单的板壳问题。在 固体力学各分支中,材料力学的分析和计算方法一般说来最为简单,但材料力学对于其他分支学科的发展起着启蒙和奠基的作用。弹性力学又称弹性理论,是研究弹性物体在外力作用下的应力场、应变场以及有关的规 律。弹性力学首先假设所研究的物体是理想的弹性体,即物体承受外力后发生变形,并且其 内部各点的应力和应变之间是对应的,外力除去后,物体恢复到原有形态,而不遗留任 何痕迹。弹性力学也可分为数学弹性力学和应用弹性力学。前者是经典的精确理论;后者是在前 者各种假设的基础上,根据实

11、际应用的需要,再加上一些补充的简化假设而形成的应用性很 强的理论。从数学上看,应用弹性力学粗糙一些;但从应用的角度看,它的方程和计算公式 比较简单,并且能满足很多结构设计的要求。塑性力学又称塑性理论,是研究固体受力后处于塑性变形状态时,塑性变形与外力的关 系,以及物体中的应力场、应变场以及有关规律。物体受到足够大外力的作用后,它的一部 或全部变形会超出弹性范围而进入塑性状态,外力卸除后,变形的一部分或全部并不消失, 物体不能完全恢复到原有的形态。一般地说,在原来物体形状突变的地方、集中力作用点附近、裂纹尖端附近,都容易产 生塑性变形。塑性力学的研究方法同弹性力学一样,也从进行微元体的分析入手。

12、塑性力学 也分为数学塑性力学和应用塑性力学,其含义同弹性力学的分类是一样的。稳定性理论是研究细长杆、杆系结构、薄板壳以及它们的组合体在各种形式的压力作用 下产生变形,以至丧失原有平衡状态和承载能力的问题。弹性结构丧失稳定性,是指结构受 压力后由和原来外形相近似的稳定平衡形式向新的平衡形式急剧转变或者丧失承载能力,对 应的压力载荷即是所谓的临界载荷。研究稳定性问题的方法一般分为静力学法、动力学法和能量法。静力学法主要用于研究 挠度微分方程的积分;动力学法主要用于研究外压力增加时结构系统的自由振动;能量法则 以最小势能原理为基础进行研究,它在工程结构,特别是复杂工程结构的研究中被广泛采 用。在工程

13、结构设计中,要进行结构的静力计算、动力计算、稳定性计算和断裂计算等。结 构力学就是研究工程结构承受和传递外力的能力,进而从力学的角度研制新型结构,以使结 构达到强度高、刚度大、重量轻和经济效益好的综合要求。振动理论是研究物体的周期性运动或某种随机的规律的学科。最简单、最基本的振动是 机械振动,即物体机械运动的周期性变化。振动会使物体变形、磨损或破坏,会使精密仪裹 精度降低。但是又可利用振动特性造福于人类。例如机械式钟表、各种乐器、振动传输机械 等都是利用振动特性的制品。因此,限制振动的有害方面和利用其有利方面,是研究振动理 论的目的。机械振动有多种分类法,最基本的分为自由振动、受迫振动和自激振

14、动。自由振动是由 外界的初干扰引起的;受迫振动是在经常性动载荷(特别是周期性动载荷)作用下的振动;自激振动是振动系统在受系统振动控制的载荷作用下的振动。在工程实践中,对振动系统主要 研究它的振型、振幅、固有频率。研究转动系统的转子动力学也属于振动理论的范畴。断裂力学又称断裂理论,研究工程结构裂纹尖端的应力场和应变场,并由此分析裂纹扩 展的条件和规律。它是固体力学最新发展起来的一个分支。许多固体都含有裂纹,即使没有宏观裂纹,物体内部的微观缺陷(如微孔、晶界、位错、 夹杂物等)也会在载荷作用、腐蚀性介质作用,特别是交变载荷作用下,发展成为宏观裂纹。 所以,断裂理论也可说是裂纹理论,它所提出的断裂韧

15、度和裂纹扩展速率等,都是预测裂纹 的临界尺寸和估算构件寿命的重要指标,在工程结构上得到广泛应用。研究裂纹扩展规律, 建立断裂判据,控制和防止断裂破坏是研究断裂力学的目的。复合材料力学是研究现代复合材料(主要是纤维增强复合材料)构件,在各种外力作用和 不同支持条件下的力学性能、变形规律和设计准则,并进而研究材料设计、结构设计和优化 设计等。它是20世纪50年代发展起来的固体力学的一个新分支。复合材料力学的研究必须考虑复合材料的各向异性性质和非均匀性。复合材料的力学性 能决定于各组成材料的力学性能以及它们的形状、含量、分布状况以及铺层厚度、方向和顺 序等多种因素。纤维增强复合材料的比强度(强度/密

16、度)和比刚度(刚度/密度)均高于传统的金属材 料,而且其力学性能可设计,此外还具有良好的耐高温性能、抗疲劳性能、减振性能以及容 易加工成型等一系列优点。这些优点都是力学工作者所追求和研究的。复合材料力学的触角 已伸入到材料设计、材料制作工艺过程和结构设计中,并在很多方面得到了广泛的应用。固体力学发展状况(1) 固体力学的两重属性与整个力学学科一样,固体力学兼具技术科学与基础科学的属性它既为工程设计和发 展生产力服务,也为发展自然科学服务。固体力学在许多工程领域都发挥着重要的作用。这些领域包括航空航天工程、造船与海 洋工程、核电工程、机械制造、动力机械工程、地质勘探、石油开采、土木工程、水利工程、 岩土工程、材料科学与工程、微电子技术、医学工程等等。作为基础科学的力学为自然科学的发展作出了重要的贡献。在力学发展中作出奠基性贡 献的学者如伽利略(G. Galileo)、牛顿(I. New

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号