单片机数字传感器课程设计

上传人:ni****g 文档编号:489392434 上传时间:2023-08-20 格式:DOC 页数:24 大小:1.86MB
返回 下载 相关 举报
单片机数字传感器课程设计_第1页
第1页 / 共24页
单片机数字传感器课程设计_第2页
第2页 / 共24页
单片机数字传感器课程设计_第3页
第3页 / 共24页
单片机数字传感器课程设计_第4页
第4页 / 共24页
单片机数字传感器课程设计_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《单片机数字传感器课程设计》由会员分享,可在线阅读,更多相关《单片机数字传感器课程设计(24页珍藏版)》请在金锄头文库上搜索。

1、计算机系统与接口课程设计 设计名称: 温度控制器姓 名: 班 级: 学 号: 指导教师: 2010年 01 月 08 日一、温度控制器的原理及功能如图11所示此多点温度测量电路主要由以下几部分组成:两个温度传感器DS18B20及其选择开关电路,控制器单片机AT89S52、扫描驱动电路、数码管LED显示器、报警电路、报警温度控制电路及电源电路等。单片机AT89S52DS18B20LED显示器 扫描驱动DS18B20温度控制电路报警电路电 源图11 多点温度计组成方框图温度传感器从测试点采集温度,然后把温度转换成电压(或电流),温度传感器输出电压的大小随温度的高低变化而变化,电压值的变化范围从几个

2、微伏到几个毫伏,不同的温度传感器,输出电压的范围也差别很大。单片机AT89S52是多点温度测量电路的控制核心,它将采集到的数字温度电压值,经过计算处理,得到相应的温度值,经扫描驱动送到LED显示器以数字形式显示测量的温度。LED显示器用于显示测量温度的结果。报警温度控制电路用于在不同应用中灵活设定报警温度,在超过设定范围时,报警电路进行报警。二、系统硬件电路的设计2.1 多点温度测量电路多点温度测量电路如图21所示由主控器单片机AT89S52作为多点温度测量电路的核心,温度传感器DS18B20负责从测量点采集温度,四位共阳LED数码管以动态扫描法实现温度显示。2.1.1 DS18B20单线智能

3、温度传感器的工作原理(1) DS18B20单线智能温度传感器的性能特点DS18B20温度传感器是美国DALLAS半导体公司最近推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9-12位的数字值读数方式。DS18B20的性能特点如下:独特的单线接口仅需要一个端口引脚进行通信;多个DS18B20可以并联在唯一的三线上,实现多点组网功能;无须外接部件;可通过数据供电,电压范围为3.05.5V;零待机功耗;温度以9或12位数字量读出;用户可定义的非易失性温度报警设置;报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;

4、负电压特性,电源极性接反时,温度计不会因发热而烧坏,但不能正常工作.(2) DS18B20的内部结构框图如图24 所示,它采用3脚PR35封装或8脚SOIC封装其管脚封装如图25所示。(3) DS18B20单线智能温度传感器的工作原理64位ROM的位结构如图26 所示。开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个 DS18B20可以采用一线进行通信的原因。非易失性温度报警触发器TH和TL,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM。高速暂存RA

5、M的结构为8字节的存储器,结构如图37 所示。CVDDI/O存储器与控制器高速缓存8位 CRC发生器配置寄存器低温触发器TL高温触发器TH温度传感器64位ROM和单线接口 图24 DS18B20内部结构图25 DS18B20的引脚排列头2个字节包含测得的温度信息,第3和第4字节是TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节为配置寄存器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时按此寄存器中的分辨率将温度转换为相应精度的数值。该字节各位的定义如图38所示。低5位一直为1,TM是测试模式位,用于设置DS18B20在工作模式还是在测试模式。在DS18B20出厂时该位

6、被设置为0,用户不要改动,R1和R0决定温度转换的精度位数,即用来设置分辨率,方法见表33 。8位检验CRC48位序列号8位工厂代码(10H)MSB LSB MSB LSB MSB LSB图26 位64位ROM结构图由表33可见,DS18B20温度转换时间比较长,而且设定的分辨率越高,所需要的温度数据转换时间就越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。表23 DS18B20分辨率的定义规定R1R0分辨率/位温度最大转换时间/ms00993.750

7、110187.510113751112750 温度LSB 温度MSBTH用户字节1TL用户字节2配置寄存器保留保留保留CRC1字节TH用户字节12字节3字节4字节 TL用户字节25字节6字节7字节 EEPROM8字节9字节图37 高速暂存RAM结构图TMR1R011111 图2-8 配置寄存器当DS18B20接收到温度转换命令后,开始启动转换。转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。单片机可以通过单总线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625/LSB形式表示。温度值格式如图29 所示。当符号位S=0时,表示测得的温度值

8、为正值,可以直接将二进制转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制值。表24 是一部分温度值对应的二进制温度数据。DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容做比较。若TTH或TTL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令做出响应。因此,可用多只 DS18B20同时测量温度并进行报警搜索。232221202-12-22-32-4SSSSSSSSLS字节MS字节 图29 温度数据值格式在64位ROM的最高有效字节中存储器循环冗余检验码(CRC)。主机根据ROM的前56位来计算CRC值,并和存入DS18

9、B20的CRC值做比较,以判断主机收到的ROM数据是否正确。DS18B20的测温原理如图210所示.图中低温度系数晶振的振荡频率受温度的影响很小,用它产生的信号作为减法计数器1的脉冲输入;高温度系数晶振随温度变化其振荡频率明显变化,所以产生的信号作为减法计数器2的脉冲输入。图中还隐含着计数门,当计数门打开时,DS18B20对低温度系数振荡器产生的时钟脉冲进行计数,进而完成温度测量。计数门的开启时间由高温度系数振荡器决定,每次测量前,首先将55所对应的一个基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在55所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进行

10、减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置值将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值就是所测温度值。图210 中的斜率累加器用于温度补偿和修正测温过程中的非线形性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直到温度寄存器值达到被测温度值。另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时很重要。系统对DS18B20的各种操作必须按协议进行。操作协议为:初始化DS18B20(发复位脉冲)

11、 发ROM功能命令 发存储器操作命令 处理数据。(4) DS18B20与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。另一种是寄生电源方式,如图211 所示。单片机端口接单总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,温度/二进制十六进制表示+1250000 0111 1101 0000 07D0H+850000 0101 0101 00000550H+25.06250000

12、 0001 1001 00010191H+10.1250000 0000 1010 001000A2H+0.50000 0000 0000 10000008H00000 0000 0000 00000000H0.51111 1111 1111 1000FFF8H10.1251111 1111 0101 1110FF5EH25.06251111 1110 0110 1111FE6FH551111 1100 1001 0000FC90H表24 DS18B20温度与测得值对应表 图210 DS18B20测温原理图上拉开始时间最大为10s。采用寄生电源供电方式时VDD和GND端均接地。由于单线制只有一

13、根线,因此发送接口必须是三态的。图211 DS18B20采用寄生电源的电路图2.2 显示电路1602原理图LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。 LCD是依赖极化滤光器(片)和光线本身。自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,

14、阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。 LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。总之,加电将光线阻断,不加电则使光线射出。 然而,可以改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。但由于计算机屏幕几乎总是亮着的,所以只有“加电将光线阻断”的方案才能达到最省电的目的。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号