led散热问题的解决方案

上传人:大米 文档编号:489228884 上传时间:2023-02-06 格式:DOCX 页数:3 大小:15KB
返回 下载 相关 举报
led散热问题的解决方案_第1页
第1页 / 共3页
led散热问题的解决方案_第2页
第2页 / 共3页
led散热问题的解决方案_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

《led散热问题的解决方案》由会员分享,可在线阅读,更多相关《led散热问题的解决方案(3页珍藏版)》请在金锄头文库上搜索。

1、细心整理LED散热问题的解决方案白光LED照旧存在着发光匀整性不佳、封闭材料的寿命不长等问题,无法发挥白光LED被期盼的应用优点。但就需求层面来看,不仅一般的照明用途,随着手机、LCD TV、汽车、医疗等的广泛应用,使得最相宜开发稳定白光LED的技术探究成果就广泛的被关注。改善白光LED的发光效率,目前有两大方向,一是提高LED芯片的面积,藉此增加发光量。二是把几个小型芯片一起封装在同一个模块下。藉由提高芯片面积来增加发光量 虽然,将LED芯片的面积予以大型化,藉此能够获得高得多的亮度,但因过大的面积,在应用过程和结果上也会出现适得其反的现象。所以,针对这样的问题,局部LED业者就依据电极构造

2、的改良和覆晶的构造,在芯片外表进展改良,来到达50lm/W的发光效率。例如在白光LED覆晶封装的局部,由于发光层很接近封装的旁边,发光层的光向外部散出时,电极不会被遮挡,但缺点就是所产生的热不简洁消散。 并非进展芯片外表改善后,再加上增加芯片面积就确定可以快速提升亮度,因为当光从芯片内部向外扩散射时,芯片中这些改善的局部无法进展反射,所以在取光上会受到一点限制,依据计算,最正确发挥光效率的LED芯片尺寸是在7mm2左右。利用封装数个小面积LED芯片快速提高发光效率和大面积LED芯片相比,利用小功率LED芯片封装成同一个模块,这样是能够较快到达高亮度的要求,例如,Citizen就将8个小型LED

3、封装在一起,让模块的发光效率到达了60lm/W,堪称是业界的首例。但这样的做法也引发的一些疑虑,因为是将多颗LED封装在同一个模块上,必需置入一些绝缘材料,以免造成LED芯片间的短路状况发生,如此一来就会增加了不少的本钱。 对此Citizen的说明是:“对于本钱的影响幅度是相当小的,因为相较于整体的本钱比例,这些绝缘材料仅不到百分之一,并可以利用现有的材料来做绝缘应用,这些绝缘材料不须要重新开发,也不须要增加新的设备来因应。”虽然Citizen的说明理论上是合理的,但是,对于无经验的业者来说,这就是一项挑战,因为无论在良率、研发、生产工程上都是须要予以克制的。还有其它方式可到达提高发光效率的目

4、标,许多业者发觉,在LED蓝宝石基板上制作出凹凸不平坦的构造,这样或许可以提高光输出量,所以,有慢慢朝向在芯片外表建立 Texture或Photonics结晶的架构。例如德国的OSRAM就是以这样的架构开发出“Thin GaN”高亮度LED。原理是在InGaN层上形成金属膜,之后再剥离蓝宝石,这样,金属膜就会产生映像的效果而获得更多的光线取出,依据OSRAM的资料显示,这样的构造可以获得75的光取出效率。除了芯片的光取出方面须要做努力外,因为期望能够获得更高的光效率,在封装的局部也是必需做一些改善。事实上,每多增加一道的工程都会对光取出效率带来一些影响,不过,这并不代表着,因为封装的制程就必需

5、会增加更高的光损失,就像日本OMROM所开发的平面光源技术,就能够大幅度的提升光取出效率,这样的构造是将LED所射出的光线,利用LENS光学系统以及反射光学系统来做限制的,所以OMROM称之为 “Double reflection ”。利用这样的构造,可将传统炮弹型封装等的LED所造成的光损失,针对封装的广角度反射来获得更高的光效率,更进一步的是,在外表所形成的Mesh上进展加工,而形成双层的反射效果,这样的方式可以得到不错的光取出效率限制的。因为这样特殊的设计,利用反射效果到达高光取出效率的LED,主要的用途是针对LCD TV背光所应用的。封装材料和荧光材料的重要性增加 假如期望用来作为LC

6、D TV背光应用的话,那幺须要克制的问题就会更多了。因为LCD TV的连续运用时间都是长达数个小时,甚至10几个小时,所以,由于这样长时间的运用状况下,拿来作为背光的白光LED就必需拥有不会因为连续运用而产生亮度衰减的状况。目前已发表的高功率的白光LED,它的发光功率是一个低功率白光LED亮度的数十倍,所以期望利用高功率白光LED来代替荧光灯作为照明设备的话,有一个必需克制的困难就是亮度递减的状况。例如,白光LED长时间连续运用1W的状况下,会造成连续运用后半段时间的亮度慢慢降低的现象,不是只有高功率白光 LED才会出现这样的状况,低功率白光LED也会存在这样的问题,只不过是因为低功率白光应用

7、的产品不同,所以,并不会因此特殊突显出这样的困扰。运用的电流愈大,所获得的亮度就愈高,这是一般对于LED能够到达高亮度的观念,不过,因为所运用的电流增加,因此封装材料是否能够承受这样长时间的因为电流所产生的热,也因为这样的连续运用,往往封装材料的热抗拒会降到10k/w以下。高功率LED的发热量是低功率LED的数十倍,因此,会出现随着温度上升,而出现发光功率降低的问题,所以在能够抗热性高封装材料的开发上,相对显的特殊重要。或许在2030lm/W以下的LED,这些问题都不明显,但是,一旦面临60lm/w以上的高发光功率LED的时候,就须要想方法解决的。热效应所带来的影响,确定不会仅仅只有LED本身

8、,而是会对整个应用产品带来困扰,所以,LED假如能够在这一方面获得解决的话,那幺,也可以减轻应用产品本身的散热负担。因此,在面对不断提高电流状况的同时,如何增加抗热实力,也是现阶段的急待被克制的问题。从各方面来看,除了材料本身的问题外,还包括从芯片到封装材料间的抗热性、导热构造及封装材料到PCB板间的抗热性、导热构造和PCB板的散热构造等,这些都须要作整体性的考量。例如,即使能够解决从芯片到封装材料间的抗热性,但因从封装到PCB板的散热效果不好的话,同样也是造成LED芯片温度的上升,出现发光效率下降的现象。所以,就像是松下就为了解决这样的问题,从2005年起先,便把包括圆形、线形、面型的白光L

9、ED,及PCB基板设计成一体,来克制可能因为出此时此刻从封装到PCB板间散热中断的问题。但并非全部的业者都像松下一样,因为各业者的策略关系,有的业者以基板设计的简便为目标,只针对PCB板的散热构造进展改良。还有相当多的业者,因为本身不生产LED,所以只能在PCB板做一些研发,但仅此还是不够的,所以须要选择散热性良好的白光LED。能让PCB板上用的金属材料,能及白光LED封装中的散热槽严密连接,到达散热的实力。这样看起来好象只是因为期望到达散热,而把简洁的一件事情予以困难化,原委这样是不是符合本钱和进步的概念?以今日的应用层面来说,很难做一个判定,不过,是有一些业者正朝向这方面作考量,例如Cit

10、izen在2004年所发表的产品,就是能够从封装上厚度为23mm 的散热槽向外散热,供应应用业者能够因为运用了具有散热槽的高功率白光LED,能让PCB板的散热设计得以发挥。封装材料的变更使白光LED寿命达原先的4倍。发热的问题不是只会对亮度表现带来影响,同时也会对LED本身的寿命出现挑战,所以在这一部份,LED不断的开发出封装材料来因应持续提中学的LED亮度所产生的影响。 过去用来作为封装材料的环氧树脂,耐热性比拟差,可能会出此时此刻LED芯片本身的寿命到达前,环氧树脂就已经出现变色的状况,因此,为了提高散热性,必需让更多的电流获得释放。除此之外,不仅因为热现象会对环氧树脂产生影响,甚至短波长

11、也会对环氧树脂造成一些问题,这是因为环氧树脂相当简洁被白光LED中的短波长光线破坏,即使低功率的白光LED就已经会造成环氧树脂的破坏,更何况高功率的白光LED所含的短波长的光线更多,恶化自然也加速,甚至有些产品在连续点亮后的运用寿命不到5,000小时。所以,及其不断的克制因为旧有封装材料环氧树脂所带来的变色困扰,不如朝向开发新一代的封装材料的选择。目前在解决寿命这一方面的问题,许多LED封装业者都朝向放弃环氧树脂,而改用了硅树脂和陶瓷等作为封装的材料。依据统计,因为变更了封装材料,事实上可以提高LED的寿命。就资料上来看,代替环氧树脂的封装材料硅树脂,就具有较高的耐热性,依据试验,即使是在摄氏

12、150180度的高温,也不会变色的现象,看起来似乎是一个不错的封装材料。硅树脂能够分散蓝色和近紫外光,及环氧树脂相比,硅树脂可以抑制材料因为电流和短波长光线所带来的劣化现象,缓和光穿透率下降的速度。以目前的应用来看,几乎全部的高功率白光LED产品都已经改用硅树脂作为封装的材料,例如,相对于波长 400450nm的光,环氧树脂约在个位的数百分比左右,但硅树脂对400450nm的光线吸取却不到百分之一,这样的落差,使得在抗短波长方面,硅树脂有着较精彩的表现。就寿命表现度而言,硅树脂可以到达延长白光LED运用寿命的目标,甚至可以到达4万小时以上的运用寿命。但是不是真的适合用来做照明的应用还有待探究,

13、因为硅树脂是具有弹性的松软材料,所以在封装的过程中,须要特殊留意应用的方式,从而设计出最适当的应用技术。对于将来应用方面,提高白光LED的光输出效率将会是决胜的关键点。白光LED的生产技术,从过去的蓝色LED和黄色YAG荧光体的组合,开发出仿真白光,到利用三色混合或者运用GaN材料,开发出白光LED,对于应用来说,已经可以看的出将会朝向更广泛的方向扩展。另外,白光LED的发光效率,已经有了不错的开展,日本LED照明推动协会的目标是,期望能够在2009年到达100lm/w的发光效率,所以预料在数年内,100lm/w发光效率就能够事实上商业化应用。日亚化学踊跃开发白光半导体雷射,在期望LED到达色

14、纯度较高的白光及高亮度的要求下,各业者不断的从每一领域加以改善,而到达这一目标,但在进展速度上,看起来照旧相当的缓慢。因此局部业者起先考虑接受其它的技术,来实现目前业界对于类似白光LED的光亮度要求。在高亮度蓝、白光LED领域的日亚化学,便将一部份的研发方向,朝向开发白光雷射做努力。 日亚化学利用及白光LED一样的GaN系材料制作半导体雷射,开发出了白光光源,以目前的表现来说,辉度已经能够到达10cd/mm左右,现有的白光LED假如期望到达这个辉度值是相当困难的,即使增加电流期望亮度增加,但这样将会使得接合点的温度上升,所带来的结果不仅会使整个发光效率降低外,还会奢侈相当多的电量。 日亚化学所

15、开发的白光半导体雷射,在芯片端不再运用荧光材料,而是将发光局部和白光产生的局部分开处理,利用200mw的蓝紫色半导体雷射,发出405nm的波长光线,把蓝色或蓝紫色半导体雷射及光纤的面进展连接,让白光从涂了荧光材料光纤的另一面放射出来,而所产生出来的白光直径仅有1.25mm,这个面积只有一样光量白光LED的1/20,所需的功耗不到0.1W,所以,在散热局部也不须要太多考虑。 虽然看起来在特性的方面是相当的不错,不过还是有一些缺点的,在运用寿命上,只有3,000小时左右,价格太贵。虽然价格的问题花一点时间就可以下降一些,但是以此时此刻30万日圆的水准来看的,要降到3,000甚至300日元,可能须要10年以上的时间。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号