第16章_物理光学

上传人:汽*** 文档编号:487694297 上传时间:2022-10-07 格式:DOCX 页数:30 大小:561.91KB
返回 下载 相关 举报
第16章_物理光学_第1页
第1页 / 共30页
第16章_物理光学_第2页
第2页 / 共30页
第16章_物理光学_第3页
第3页 / 共30页
第16章_物理光学_第4页
第4页 / 共30页
第16章_物理光学_第5页
第5页 / 共30页
点击查看更多>>
资源描述

《第16章_物理光学》由会员分享,可在线阅读,更多相关《第16章_物理光学(30页珍藏版)》请在金锄头文库上搜索。

1、 2011高考物理专题教案第十七章:物理光学夯实基础知识一光的干涉和衍射1双缝干涉干涉是波独有的特征。如果光是一种波,就应该能观察到光的干涉现象。1801年,托马斯杨利用双缝,终于成功地观察到了光的干涉现象。(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象。(2)产生干涉的条件两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹。形成相干波源的方法有两种:利用激光(因为激光发出的是单色性极好的光)。设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必

2、然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。S1S2bdcaSS /(3)双缝干涉实验规律双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为。若光程差是波长的整倍数,即(n=0,1,2,3)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3),P点将出现暗条纹。屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹。若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹。屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d、双缝到屏的距离及

3、光的波长有关,即。在和d不变的情况下,和波长成正比,应用该式可测光波的波长。用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于。2薄膜干涉(1)薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹。(2)薄膜干涉的应用增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的1/4。检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象。3光的衍射(1)

4、光的衍射现象光在遇到障碍物时,偏离直线传播方向而照射到阴影区域的现象叫做光的衍射。衍射也是波的特性。如果光是一种波,就应该能观察到光的衍射现象。但由于可见光的波长在数量级,而一般物体的大小比这个尺度大得多,因此很难看到明显的光的衍射现象。(2)光发生明显衍射现象的条件当孔或障碍物的尺寸比光波波长小,或者跟波长差不多时,光才能发生明显的衍射现象缝和孔的衍射现象的规律是相同的:在发生明显衍射的条件下,当窄缝变窄(或孔变小)时,亮斑的范围变大,条纹间距离变大,而亮度变暗。注意关于衍射的表述一定要准确。(区分能否发生衍射和能否发生明显衍射)各种不同形状的障碍物都能使光发生衍射。发生明显衍射的条件是:障

5、碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。在发生明显衍射的条件下,当窄缝变窄时,亮斑的范围变大,条纹间距离变大,而亮度变暗。(3)衍射图样单缝衍射:中央为亮条纹,向两侧有明暗相间的条纹,但间距和亮度不同。白光衍射时,中央仍为白光,最靠近中央的是紫光,最远离中央的是红光。圆孔衍射:明暗相间的不等距圆环。泊松亮斑:光照射到一个半径很小的圆板后,在圆板的阴影中心出现的亮斑,这是光能发生衍射的有力证据之一。双缝干涉和单缝衍射的联系与区别双缝干涉和单缝衍射的图样都是明暗相间的条纹。但双缝干涉的条纹间距是等宽的,亮度也是均匀的;而单缝衍射的条纹是中央宽,两边窄,亮度分布也是中央亮两边暗。双缝干涉装

6、置中,入射光从单缝到双缝之间的传播过程中,实际上已经发生了衍射;单缝衍射中的亮、暗纹的形成,可以看成是从单缝不同位置射出的光在光屏处发生干涉,这些干涉条纹叠加后形成的就是单缝衍射的结果二光的粒子性1光电效应(1)在光的照射下物体发射电子的现象叫光电效应。发射出来的电子叫光电子。(右图装置中,用弧光灯照射锌版,有电子从锌版表面飞出,使原来不带电的验电器带正电。)(2)光电效应的规律。任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;若入射光的频率低于这个频率,不论入射光多么强,也不论光照射时间有多么长,都不能发生光电效应。光电子的最大初动能与入射光的强度无关,只随

7、着入射光频率的增大而增大。瞬时性:入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过秒。当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。(3)光电效应的理解光电效应是单个光子和单个电子之间的相互作用产生的。金属中的某个电子只能吸收一个光子的能量,只有当吸收的能量足够克服原子核的引力而逸出时,才能产生光电效应,而光子的能量与光的频率有关,由此可解释光电效应的瞬时性和存在极限频率的原因。光子是能量为的粒子,表现出粒子性,而光子的能量与频率有关,体现了波动性,所以光子是统一了波粒二象性的微粒。但是,在不同的条件下的表现不同,大量光子表现出波动性,个别光子的表现出粒子性;光在传播

8、时表现出波动性,光和其他物质相互作用时表现出粒子性;频率低的光波动性更强,频率高的光粒子性更强。有关光电效应的问题主要是两个方面:一个是关于光电效应现象的判断,另一个就是运用光电效应方程进行简单的计算。解题的关键在于掌握光电效应规律,明确各概念之间的决定关系,即有:光电子的最大初动能、光电流强度及入射光强度的关系:在光电效应中,光电子的最大初动能随入射光频率的增大而增大,与入射光的强度无关;“光电流强度”指的是光电流的最大值(亦称饱和值),它正比于入射光的强度; “入射光的强度”指的是单位时间内入射到金属表面单位面积上的光子的总能量,在入射光频率不变的情况下,光强度正比于单位时间内照射到金属表

9、面单位面积的光子数。若换用不同频率的光照射,即使光强度相同,单位时间内照射到金属表面单位面积的光子数也不相同,因而从金属表面逸出的光电子数也不相同,形成的光电流大小也不同。记住和理解说明光具有波粒二象性的典型实验:“光电效应现象”说明了光具有粒子性,这里的粒子不等于宏观世界的质点,而是微观粒子,即“光子”;“光的干涉、衍射”实验证明了光是一种波,具有波动性,但这里的波动性也并不等于宏观世界里的机械波,而是概率波。光的干涉、衍射现象中亮条纹处,是光子到达可能性较大的区域,暗条纹处是光子到达可能性较小的区域。(4)爱因斯坦的光子说。光是不连续的,是一份一份的,每一份叫做一个光子,光子的能量E跟光的

10、频率成正比:(h是普朗克恒量,是光子的频率。)(5)爱因斯坦光电效应方程:光子说对光电效应现象的解释:当光子照射到金属上时,它的能量可被金属中的某个电子全部吸收,电子吸收光子的能量后,动能立刻增加,不需要积累能量的过程。如果电子的动能足够大,能够克服内部原子核对它的引力,就可以离开金属表面逃逸出来,成为光电子。最大初动能和逸出功:金属表面的电子吸收光子后,克服金属原子核的引力做功。直接从金属表面逸出的电子所具有的动能称为最大初动能,克服金属原子核的引力所做的功的最小值叫逸出功。光电效应方程:(是光电子的最大初动能;是逸出功,它和极限频率的关系为,即从金属表面直接飞出的光电子克服正电荷引力所做的

11、功。显然,该方程符合能量守恒定律。)三光的电磁说 光的偏振激光1光的电磁说(1)光的干涉和衍射以无可辩驳的事实证明了光是一种波。但它和水波、声波等机械波一样吗?是否也靠弹性介质传播?这个问题一直困扰着光的波动学说。麦克斯韦根据电磁波与光在真空中的传播速度相同,提出光在本质上是一种电磁波这就是光的电磁说,赫兹用实验证明了光的电磁说的正确性。(2)电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激

12、发后产生的;伦琴射线是原子的内层电子受到激发后产生的;射线是原子核受到激发后产生的。其产生机理、性质差别、用途等概括如下表:(3)实验证明:物体辐射出的电磁波中辐射最强的波长。和物体温度之间满足关系(b为常数)。可见高温物体辐射出的电磁波频率较高。在宇宙学中,可以根据接收到的恒星发出的光的频率,分析其表面温度。(4)可见光频率范围是,波长范围是。(5)光的波长、频率和光速的关系式为:。在真空中,不同色光的光速相同;在介质中,不同色光的光速不同。色光的颜色是由频率决定的。同一种色光在不同介质中传播时,颜色和频率均不变,而波速和波长却因介质不同而改变。2光的偏振偏振现象在沿同一个方向传播的纵波中,

13、所有介质质点的振动方向都和波的传播方向平行,因此振动总是发生在同一条直线上的;而在沿同一个方向传播的横波中,介质质点的振动方向和波的传播方向是垂直的,而跟波的传播方向垂直的方向有无穷多种可能,沿同一方向传播的横波,质点的振动方向可能是不同的,因此会发生偏振现象。能否发生偏振,是纵波和横波的区别。利用偏振可以判定一种波是横波还是纵波。(2)偏振光:在跟光传播方向垂直的平面内,光振动在某一方向较强而在另一些方向振动较弱的光即为偏振光。自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。自然光射到两种介质的界面上,如果光的入射方向合适,使反射和折射光之间的夹角恰好是90,

14、这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。我们通常看到的绝大多数光都是偏振光。(3)自然光。太阳、电灯等普通光源直接发出的光,包含垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫自然光。(4)光的偏振现象证明光是横波(5)偏振光的应用偏振光可用于摄影。在拍摄照片时为消除水面或玻璃表面多余的反光,可以在照相机镜头前装偏振滤光片,让其透振方向与反射光的偏振方向垂直,就可以减弱反射光的干扰,使拍出的相片影象清晰。偏振光还可用于拍摄和观看立体电影。3激光(1)光是从物质的原子中发射出来的。原子获得能量后处于不稳定状态,会以光子的形式把能量发射出来。(

15、2)普通光源中的各个原子何时发光,发出什么频率的光,向什么方向发光,都是不确定的。即使同一个红色灯泡发光,也不能保证发出的光频率相同(3.9-4.91014Hz),因此不能得到稳定的干涉图样。(3)激光是一种人工相干光,激光的特点有激光是人工产生的相干光。激光的平行度好。(可以用来测距、测速;可以用来刻录、读取光盘)激光的亮度高。(切割、焊接、打孔、手术用光刀、治疗视网膜剥落;用于人工控制聚变)重要应用有:通信、测距、光盘读取、切割等。4光谱(1)线状光谱由一些不连续的亮线组成,是稀薄气体发光产生的光谱,每种元素的原子只有发出某些特定的谱线(特征谱线),不同元素的明线光谱不同,所以线状谱又叫原子光谱。(2)吸收光谱连续光谱中某些波长的光被物质吸收后产生的光谱,它是由分布在连续光谱背景上的某些暗线组成的,通常在吸收光谱中看到的特性谱线(暗线)比相应的明线光谱中的明线光谱要少一些。(3)光谱分析由于每种元素都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成,做光谱分析时,可以利用线状光谱,也可以利用吸收光谱。(4)发射光谱与吸收光

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号