单闭环控制系统设计及仿真要点

上传人:re****.1 文档编号:487427055 上传时间:2023-12-01 格式:DOCX 页数:14 大小:247.03KB
返回 下载 相关 举报
单闭环控制系统设计及仿真要点_第1页
第1页 / 共14页
单闭环控制系统设计及仿真要点_第2页
第2页 / 共14页
单闭环控制系统设计及仿真要点_第3页
第3页 / 共14页
单闭环控制系统设计及仿真要点_第4页
第4页 / 共14页
单闭环控制系统设计及仿真要点_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《单闭环控制系统设计及仿真要点》由会员分享,可在线阅读,更多相关《单闭环控制系统设计及仿真要点(14页珍藏版)》请在金锄头文库上搜索。

1、单闭环控制系统设计及仿真班级电信如14姓名张庆迎学号 142081100079 摘要 直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了 双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性 能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的 依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速 系统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对 系统的性能指标进

2、行了实验测试,表明所设计的双闭环调速系统运行稳定可靠, 具有较好的静态和动态性能,达到了设计要求。采用MATLA歆件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK!行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。关键词直流电机直流调速系统速度调节器电流调节器双闭环系统一、单闭环直流调速系统的工作原理1、单闭环直流调速系统的介绍单闭环调速系统的工作过程和原理: 电动机在启动阶段,电动机的实际转速 (电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电 压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流 给定

3、值送入电流调节器,此时则以最大电流给定值使电流调节器输出移相信号 , 直流电压迅速上升,电流也随即增大直到等于最大给定值,电动机以最大电流恒 流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅 值来改变。在电动机转速上升到给定转速后,速度调节器输入端的偏差信号减小 到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。2、双闭环直流调速系统的介绍为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器, 分别调节转速和电流,即分别引入转速负反馈和电流负反馈。 两者之间实行嵌套 连接,如图1 1所示。把转速调节器的输出当作电流调节器的输入,再用电流 调节

4、器的输出去控制电力电子变换器 UPE从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统图11 转速、电流双闭环直流调速系统其中:ASR转速调节器ACR-电流调节器TG-测速发电机TA-电流互感器 *UPE电力电子变换器 Un -转速给定电压Un-转速反馈电压 Ui -电流给定电压Ui -电流反馈电压3双闭环直流调速系统的稳态结构图和静特性图12双闭环直流调速系统的稳态结构框图分析静特性的关键是掌握 PI调节器的稳态特征,一般使存在两种状况:饱 和一输出达到限幅值,不饱和一输出未达到限幅值。当调节器饱和时,输出为包 值,输入量的变化不再影响输出,除

5、非有反向的输入信号使调节器退出饱和, 换 句话说,饱和的 调节器暂时隔断了输入和输出的联系, 相当于使该调节环开环。 当调节器不饱和时,PI的作用使输入偏差电压A U在稳态时总为零。实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。双闭环调速系统的静特性在负载电流小于时表现为转速无静差,这时,转速负反馈起主要的调节作用,但负载电流达到时,对应于转速调节器的饱和输出 , 这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保 护.这就是采用了两个PI调节器分别形成内、外两个闭环的效果。然而,实际上 运算放大器的开环放

6、大系数并不是无穷大, 因此,静特性的两段实际上都略有很 小的静差,见图1 3中虚线。图13双闭环直流调速系统的静特性4、双闭环直流调速系统的数学模型双闭环直流调速系统数学模型的建立涉及到可控硅触发器和整流器的相关内容。全控式整流在稳态下,触发器控制电压Uct与整流输出电压Ua0的关系为:Ua0 = AU2 cos: = AU2 cos(KU ct)其中:A-整流器系数;U2 -整流器输入交流电压;口 -整流器触发 角;Uct-触发器移项控制电压;K-触发器移项控制斜率;整流与触发关系为余弦,工程中近似用线性环节代替触发与放大环节,放大系数为:K-绘制双闭环直流调速系统的动态结构框图如下:图1

7、4双闭环直流调速系统的动态结构框图:、系统设计方法及步骤1、系统设计的一般原则概念清楚、易懂; 计算公式简明、好记; 不仅给出参数计算的公式,而且指明参数调整的方向; 能考虑饱和非线性控制的情况,同样给出简单的计算公式;适用于各种可以简化成典型系统的反馈控制系统。CeUnRanN220-136 0.21460= 0.132/TiL 15 10,R -0.5= 0.03TmGD2R375CeCm22.5 0.5375 0.132 30. 0.132= 0.18-30 -Cm = Ce =1.26 ji品闸管装置放大倍数 Ks =40时间常数:T = 0.03s Tm = 0.08s2、电流环设计

8、(1)确定时间常数整流装置滞后时间常数:Ts = 0.0017s。电流反馈滤波时间常数:Toi = 0.002s电流环小时间常数之和:Ti = 0.0037s(2)选择电流调节器结构根据设计要求:3 M 5%,保证稳态电流无差,可按典型I型设计电流调节器。电流环控制对象是双惯性型的,所以把电流调节器设计成 PI型的 检查对电源电压的抗扰性能,各项指标都可接受。所以电流调节器传递函数为: Wacr s = Ki is 1 0is(3)选择电流调节器参数电流调节器超前时间常数:.i =Ti = 0.03s电流反馈系数P : P =1.35电流环开环增益:要求时 仃i M5% ,取K1Ti =0.5

9、 ,因此KI =135.1所以 Ki =1.013,因此:Wacr s =1.013 0.03s 10.03s(4)计算调节器电阻和电容调节器输入电阻 Rg =40KC ,各电阻和电容值计算如下:R =KiR0 =40.5KCCi = -L = 0.75 uF RiCoi -0.2uF按上述参数,查表知 55%,电流环可达到动态跟随性能指标:3、转速环设计(1)确定时间常数1电流环等效时间常数: 一 =2Ti =0.0074sKI转速滤波时间常数:Ton = 0.01s转速换小时间常数:=0.0174s(2) 选择电流调节器结构按跟随和抗扰性能都能较好的原则,在负载扰动点后已经有了一个积分 环

10、节,为了实现转速无静差,还必须在扰动作用点以前设置一个积分环节 因此需要R由设计要求,转速调节器必须含有积分环节,故按典型R型 系统一选用设计PI调节器。所以转速调节器传递函数为:Wasr(s)= Kn“ns+1)。 - ns(3) 选择转速调节器参数取h=5,则ASR的超前时间常数为:部= hTn =0.087s转速环开环增益为:Kn=396.4N 2h2T2n转速反馈系数:二 =0.007于是求的ASR的比例系数为:Kn =11.7因此:WASR S =11.7 0.087s 10.087s(4) 计算调节器电容和电阻调节器输入电阻Ro=40KC ,则Rn = KnR0 = 468LonR

11、n4TnRo=0.1 8 5二1、Matlab 和 Simulink 简介1、Matlab 简介MATLABI:矩阵实验室(Matrix Laboratory )的简称,是美国 MathWorks公 司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的 高级技术计算语言和交互式环境,主要包括 MATLA抑Simulink两大部分。MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以 及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数 据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易 于使用的视窗环境中,为科学研究、工程设计以

12、及必须进行有效数值计算 的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统 非交互式程序设计语言(如C、Fortran )的编辑模式,代表了当今国际科学计算软件的先进水平。2、Simulink 简介(1)简介Simulink是MATLABt重要的组件之一,它提供一个动态系统建模、仿 真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通 过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以 上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设 计。同时有大量的第三方

13、软件和硬件可应用于或被要求应用于Simulink。(2)功能Simulink 是MATLABt的一种可视化仿真工具,是一种基于 MATLAB勺框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛 应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。 Simulink 可以用连续采样时间、离散采样时间或两种混合的采样时间进行 建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速 率。为了创建动态系统模型,Simulink 提供了一个建立模型方块图的图形用户接口 (GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提 供了一种更快捷、直接明了的方式,而且

14、用户可以立即看到系统的仿真结 果。Simulink®是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink 提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。四、Simulink环境中的系统模型、仿真结果及分析1单闭环有静差转速负反馈调速系统的仿真单闭环有静差转速负反馈调速系统的仿真模型:单闭环有静差转速负反馈调速系统的仿真结果:转速分析:图中是Kp =3.11的仿真图形,Kp减小,超调量随着减小,但静差越大;Kp增大,静差随着减小,但还是很大,同时振荡也越剧烈。2、单闭环无静差转速负反馈调速系统的仿真单闭环无静差转速负反馈调速系统的仿真模型:Soopel单闭环无静差转速负反馈调速系统的仿真结果:KP = 0.561。KP =1.6 =8X160014001200 -1000 -eoo -EOD400 -2叩-1此: f 金 11tll.lAtt, 1 1-,-,.-1 _-_- , h II !11r r r l .i J U 41.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 毕业论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号