《线性代数》课后习题答案(陈维新)

上传人:m**** 文档编号:487100993 上传时间:2022-11-29 格式:DOC 页数:50 大小:4.15MB
返回 下载 相关 举报
《线性代数》课后习题答案(陈维新)_第1页
第1页 / 共50页
《线性代数》课后习题答案(陈维新)_第2页
第2页 / 共50页
《线性代数》课后习题答案(陈维新)_第3页
第3页 / 共50页
《线性代数》课后习题答案(陈维新)_第4页
第4页 / 共50页
《线性代数》课后习题答案(陈维新)_第5页
第5页 / 共50页
点击查看更多>>
资源描述

《《线性代数》课后习题答案(陈维新)》由会员分享,可在线阅读,更多相关《《线性代数》课后习题答案(陈维新)(50页珍藏版)》请在金锄头文库上搜索。

1、第一章 行列式习题1.11. 证明:(1)首先证明是数域。因为,所以中至少含有两个复数。任给两个复数,我们有。因为是数域,所以有理数的和、差、积仍然为有理数,所以。如果,则必有不同时为零,从而。又因为有理数的和、差、积、商仍为有理数,所以。综上所述,我们有是数域。(2)类似可证明是数域,这儿是一个素数。(3)下面证明:若为互异素数,则。(反证法)如果,则,从而有。由于上式左端是有理数,而是无理数,所以必有。所以有或。如果,则,这与是互异素数矛盾。如果,则有,从而有“有理数=无理数”成立,此为矛盾。所以假设不成立,从而有。同样可得。(4)因为有无数个互异的素数,所以由(3)可知在和之间存在无穷多

2、个不同的数域。2. 解:(1)是数域,证明略(与上面类似)。(2)就是所有的实部和虚部都为有理数的复数所组成的集合。而复数域。(3)不是数域,这是因为他关于除法不封闭。例如。3. 证明:(1)因为都是数域,所以,从而。故含有两个以上的复数。任给三个数,则有且。因为是数域,所以有且。所以。所以是数域。(2)一般不是数域。例如,我们有,但是。习题1.22. 解:项的符号为习题1.31证明:根据行列式的定义=0。所以上式中(-1)的个数和(+1)的个数一样多,(-1)是由奇排列产生的,而(+1)是由偶排列产生的。同时根据行列式的定义这里包括了所有的阶排列,故可以得到全体阶排列中奇排列的个数与偶排列的

3、个数一样多,各占一半。2解 (1) =; (2); (3) ; (4)=。 (5) 。3解:(1)。 (2)左端=右端。(3) 。 (4)原式(先依次)=。=。 (5)原式(先依次)=。=。4解:设展开后的正项个数为。则由行列式的定义有。又因为 (利用)(下三角行列式)。所以有。5证明:(1)左端=右端。(2)利用性质5展开。6解:(3)与上面3(3)类似可得。7解:利用行列式的初等变换及性质5。8解:。9证明:设原行列式=D。则对D进行依次如下变换后所得的行列式D第一列由题设中所给的5个数字构成。从而由行列式的定义可知D可被23整除。又由行列式的性质知D。因为23是素数,且不可能被23整除,

4、所以D可以被23整除。习题1.41解:(1) =; (2) =; (3)方法一 + =; 方法二 逐次均按第2行展开可得同样结果, 具体解法可参见下例。 (4)逐次按第2行展开 =; (5) =; (6) = ; (7)换行后可得到范德蒙行列式; (8)先把第一行加到第三行,再提取第三行的公因式,换行后可得到范德蒙行列式。2解:(1) + =; (2) =1+;(此处有笔误)(3) =,据此当时,原式=;当时,原式=。3解:(1)将按第n 列展开得:=+ =。 (2)略(参考课本例中的叙述)。4解:(1)交换行、列后得到三角块行列式,然后利用例1.4.6的结果;或者直接利用Laplace定理。

5、 (2)左端先做变换,再做变换,然后利用P30推论。5解:(1)=;(2)=;(3)利用初等变换。附加:P30推论的证明:证 (1) 将第r+1列与r列交换, 由将新的r列与r-1列交换, 如此继续, 直到将第r+1列交换到第1列, 这样共交换r次; 再将第r+2列如上方法交换至第2列, 也交换了r次, 如此继续直到将r+s列交换至第s列. 于是交换了rs次后得到=将所得行列式的第r+1行依次与第r行, r-1行, , 第1行交换. 交换r次后, r+1行交换至第1行. 类似地交换r次后将r+2行交换至第2行, , 交换r次后将第r+s行交换至第s行, 于是交换rs次后得: (2), (3)

6、思路与(1)类似, 证明过程略去。习题1.5 2解:计算得 =根据克拉默法则, 当时, 即时, 原方程组只有零解。习题1.61证明:方法一 归化 =右端.方法二 归纳法 当时, = 结论成立. 假设时结论成立, 即有 则当时, 将 的第n列看成1+0,1+0,1+, 故可表示为2个行列式之和, 而第2个行列式按第n列展开可算出为从而 =+ 而=.所以=+=+=右端.方法三 递推由证明(二)可知与存在以下递推关系:=+所以=+= =右端.方法四 加边法 = =右端。2证明:(1)注意当把行列式按第n列展开时,得到的递推公式中有三项,故归纳法第一步应验证n=1,2时均成立。而归纳法第二步应假设当时

7、成立,去证明当n=k时成立。3解:(2)先把除第一列外的所有列都加到第一列,然后提出第一列的公因子;再依次;然后按第一列展开,再依次;最后按最后一列展开。4解:通过倍加行变换易知f(x)的次数最大为1;又因为如果全取零,则有f(x)=0。所以选(D)。5看自己或别人的作业。6解:方法一:利用课本中例1.4.3的方法。 方法二:设。则有f(x)中的系数为。又因为 (范德蒙行列式),所以f(x)中的系数为。 所以可得。第二章 线性方程组习题2.12证明. 因,说明不全为零,故当某个,通过适当的行互换,可使得位于左上角,用来乘第一行,然后将其余行减去第一行的适当倍数,矩阵A可以化为:,由于,此时必有

8、,故可以对重复对A的讨论, 此时A可经初等行变换化为, 然后再将第行的倍加到第行(),再将第行的倍加到第行(),这样继续下去,一直到将第2行的倍加到第1行,此时A就化为, 故所证结论成立。3证明:以行互换为例: 列互换可以同样证明.若, 这相当于A中交换第i行和第j行, 所以结论成立。习题2.21 解:中一定存在不为零的阶子式,否则秩,与题设秩()矛盾. 由秩()知,中至少存在一个阶子式不为零, 这表明中的阶子式只要有一个不为零即可,其余可以等于零,也可以不等于零. 中一定不存在不为零的阶子式,否则的秩至少是, 这也与题设秩()矛盾。2 提示:利用矩阵的行秩和向量的极大无关组证明。3 略。4

9、思路:可将矩阵写成一个列向量和一个行向量的乘积,从而由秩;进而因为矩阵不等于零,所以秩0。5 略。习题2.3略。习题2.42证明:()的增广矩阵为=,因为系数矩阵的秩不超过增广矩阵的秩, 所以有秩()秩().观察可知, 矩阵其实就是在增广矩阵下面加了一行, 所以秩()秩(). 由题意知, 秩()=秩(), 据此可得秩()秩(). 综上知秩()=秩(), 故()有解。3解:将增广矩阵只用初等行变换化为阶梯形矩阵. 当时, 秩()秩(), 所以线性方程组无解;当时, 秩()=秩()未知量个数, 所以线性方程组有无穷多解. 原方程组同解于 故通解为 其中为任意常数。4证明:该线性方程组的增广矩阵=,

10、 由题意知秩()=. 但是系数矩阵是一个的矩阵, 所以秩()秩(). 据此秩()秩(), 所以该线性方程组无解。第三章 矩阵习题3.14解:(1) 由矩阵乘法运可得:;。 (2)与D乘法可换的矩阵满足。故与的元素对应相等,利用()的结果,有,从而。由于(),可得:当时,即为对角矩阵。5证明:(1)数学归纳法:当时,计算得,故结论成立 假设当时,结论成立,即有, 则当时,因所以, 即当时,结果成立由归纳法原理知,对任意大于2得正整数有(2)当时,结果显然成立当时, 直接计算得. 假设当时,结果成立,即我们要证明当时,结果也成立,即可完成证明 第一种情况:k为奇数,则 第二种情况:k为偶数,则综上

11、: 即当时,结论成立6 解:(1)先计算出时的结果。然后归纳出应该有,接下来用数学归纳法证明这一归纳出的结果。 当时,结论显然成立 假设当时,结论成立,即 则当时, 结论成立7记住结论。8证明:因为与所有n阶方阵乘法可换,故与乘法可换, 利用第7题结果有,即设,则即为数量矩阵10证明:设,则tr 同理可得 tr 由于 ,可得trtr11证明:假如存在n阶方阵满足,则trtrtr由于,可得trtr,这与10题所得结果矛盾所以假设不成立即不存在n阶方阵,满足15证明:因,都是对称矩阵, 故, 从而为对称矩阵.16证明:设,则由的主对角线上元素为零, 由为实数知.证法二:利用二次型。习题3.24思路

12、:注意到矩阵多项式的运算和一般多项式的运算一样就可以了。 证明:计算, 由题意可知, 所以.根据定理3.2.1的推论可知可逆且其逆为.5证明:计算= 计算据此,根据定理3.2.1的推论可知可逆且其逆为.6证明:因为所以有. 由题意可知, 所以可在等式两边同乘上, 由此可得, 整理得,根据定理3.2.1的推论可知可逆且.7证明:(1) 由题意可得, 根据定理3.2.1的推论可知可逆并且. (2) 由题意可得, 而这个等式可化为, 即有, 同样根据定理3.2.1的推论可知可逆并且.8思路:注意题设实际上是给出了矩阵多项式。所以一般情况下,如果可逆,其逆矩阵也应该是一个矩阵多项式。所以我们可以假设其

13、逆矩阵为(待定系数法),从而由逆矩阵定义知应该有,即。在注意到题设是,所以我们有,所以有,即。 证明:因为,所以。所以。9证明:(1); (2)由于, 所以, 由此可得; (3); (4); (5)由(2)中分析可知, 所以; (6) 由(2)中分析可知, 则。10证明:都可逆, 所以有, 由此可知, 从而得到. 另一方面, 由于都可逆且均为阶方阵, 所以也可逆, 所以有, 而. 综合上述可得.11略。12证明:假设是可逆矩阵, 那么在等式两边都左乘的逆矩阵可得, 这与题设中矛盾! 所以不可逆.13证明:根据题意可知存在非零的nt矩阵B使AB=O, B是非零矩阵所以必存在某一列上的元素不全为零, 不妨设这一列为. 由于, 所以, 据此可知是线性方程组的一个非零解. 由于有非零解, 所以=0.14略。15解:(A) 可逆的充要条件是而不是, 设, 但不是可逆矩阵, 所以选项(A)是错误的. (B) 设,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 中学教育 > 试题/考题 > 初中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号