物理光学与应用光学第二章

上传人:资****亨 文档编号:486538518 上传时间:2024-05-11 格式:PPT 页数:42 大小:3.25MB
返回 下载 相关 举报
物理光学与应用光学第二章_第1页
第1页 / 共42页
物理光学与应用光学第二章_第2页
第2页 / 共42页
物理光学与应用光学第二章_第3页
第3页 / 共42页
物理光学与应用光学第二章_第4页
第4页 / 共42页
物理光学与应用光学第二章_第5页
第5页 / 共42页
点击查看更多>>
资源描述

《物理光学与应用光学第二章》由会员分享,可在线阅读,更多相关《物理光学与应用光学第二章(42页珍藏版)》请在金锄头文库上搜索。

1、第二章 理想光学系统 共轴球面系统只有在近轴区才能成完善像,而对于宽光束,当u 较大时,成像就不完善,存在像差。其它原因:1光束太细,进入光学系统的能量太弱,成像太暗。2只能对物面上很小的局部成像,不能反映全貌。只能对细光束成完善像的光学系统是无实用价值的!只能对细光束成完善像的光学系统是无实用价值的!寻找一个能对较大范围、较粗光束及较宽波段范围都能成满意像的光学系统,就是应用光学所需要解决的中心问题。编辑课件到哪里找这样的系统呢?为了揭示物、像、成像系统三者之间的内在联系,可暂时抛开成像系统的具体结构,将一般仅在光学系统近轴区存在的完善像拓展成在任意大的空间以任意宽光束都能完善成像的理想模型

2、,即称为理想光学系统,又称为高斯光学系统1841年由高斯提出。编辑课件理想光组的成像作为衡量实际光学系统成像质量的标准进行光学设计的时候,开始只是提出性能要求,如放大倍数等。这时,光组的具体参数是未知的,因此无法用近轴光学公式计算。由理想光组所抽象出来的光学特征公式进行光组的初始计算,也就是以理想光组理论为根底,根据要求,寻找和确定一个能满足要求的光学系统的整体方案。称为光学系统的外形尺寸计算,也称轮廓计算编辑课件 理想光组可有任意多个折、反射球面或多个光组组成。寻找理想光组的特征点、面就可以代表整个光组的光学特性,用以讨论成像规律。编辑课件PAAPO1OkBCCB理想光学系统,物像关系具有以

3、下性质:1物空间一个物点对应像空间中唯一的像点,这种一一对应关系称为共轭,这两个对应点称为共轭点。2物空间中每一条直线对应于像空间中唯一相应直线,这两条直线称为共轭线。3物空间中每一个平面对应于像空间中唯一平面,这两个面称为共轭面。4如果物空间任意一点D位于直线BC上,那么其在像空间的像D也必位于BC的共轭线BC上。DD第一节 共线成像理论 编辑课件 把这种点对应点,直线对应直线,平面对应平面的成像变换称为共线成像,上述定义称为共线成像理论。编辑课件二、共轴理想光学系统的成像性质过主光轴的一个截面1、位于光轴上物点的共轭像点必然在光轴上;位于过光轴的某一截面内的物点对应的共轭像点必位于该平面的

4、共轭像面内,过光轴的任意截面成像性质都相同。2、垂直于光轴的物平面,其共轭像平面也必然垂直于光轴,且平面物与其共轭平面像的几何形状完全相似,即:在垂直于光轴的同一平面内,物体的各局部具有相同的放大率。编辑课件O1O2O1O2OO1两对共轭面的位置和放大率:利用光轴上的共轭点;由共轭面的放大率确定出射光线的方向。BAA B 3.一个共轴理想光学系统,如果两对共轭面的位置和放大率,或者一对共轭面的位置和放大率,以及轴上两对共轭点的位置,那么其它一切物点的共轭像点都可以根据这些的共轭面和共轭点来表示。编辑课件 2一对共轭面的位置和放大率,以及轴上另外两对共轭点的位置OOO1O2O3O3O2O1 利用

5、光轴上的共轭点;由共轭面的放大率确定出射光线的方向。ABA B 编辑课件第二节 理想光学系统的基点与基面共轴球面系统:球面的曲率中心在同一轴线上的光学系统 只要找到相邻球面之间的关系,就可以解决整个光学系统的光路计算问题。问题就是这么简单!前面讨论的单个折射球面的光路计算及成像特性,对构成光学系统的每个球面都适用。编辑课件理想光组有一些特殊的点和平面,利用它们来讨论光组的成像特性,可以使问题大大的简化。表征光组特性的点、面称为基点基点和基面基面共轴理想光学系统的基点和基面一无限远轴上物点发出的光线一无限远轴上物点发出的光线 h 是轴上物点A发出的一条入射光线的投射高度由三角关系:UhLA编辑课

6、件当 即物点向无限远处左移时,由于任何光学系统口径有限,所以此时 即无限远轴上物点发出的光线与光轴平行hL编辑课件二像方焦点、像方焦平面;像方主点、主平面;二像方焦点、像方焦平面;像方主点、主平面;像方焦距像方焦距AUF EhE F F 就是无限远轴上物点的像点,称像方焦点像方焦点AE 是一条平行于光轴的入射光线它通过理想光学系统后,出射光线EF 交光轴于F 编辑课件 过F点作垂直于光轴的平面,称为像方焦平面像方焦平面它是无限远处垂直于光轴的物平面的共轭像平面共轭像平面将AE延长与出射光线EF的反向延长线交于Q通过Q点作垂直于光轴的平面交光轴于H点,那么QH平面称为像方主平面,H称为像方主点A

7、UF EhEQ H 编辑课件从像方主点H 到像方焦点F 之间的距离称为像方像方焦距焦距,用 f 表示 f 也遵从符号规那么,它的起始原点是像方主点H根据三角关系,有:AUF EhEQ H f 编辑课件-w三无限远轴外物点发出的光线F无限远轴外物点发出的能够进入光学系统的光线总是相互平行的,光线与光轴有一定的夹角,用 w 表示。这样一束平行光线经过理想光组后,一定相交于像方焦平面上的某一点,这一点就是无限远轴外物点无限远轴外物点的共轭像的共轭像。编辑课件四物方焦点、物方焦平面;物方主点、主平面;物方焦距EhFUE 如果轴上某一点F的共轭像点在无限远处,即由F发出的光线经光组后与光轴平行,那么 F

8、 称为系统的物方焦点。B编辑课件QEB的反向延长线与FE交于Q,过Q点做与光轴垂直的平面,与光轴交于 H点。那么QH平面称为物方主平面,H点称为物方主点。从物方主点H 到物方焦点F 之间的距离称为物方物方焦距焦距,用 f 表示 f 也遵从符号规那么,它的起始原点是物方主点H。这里为-fEhFUEH-fB编辑课件五物方主平面与像方主平面之间的关系光学系统E1E kBAO1OKP1P kFFQQHH-ff hh 入射高度为 h 的 AE1 的延长线与Pk F 的反向延长线决定了Q 根据光路的可逆性,入射高度同样为 h 的 BEk 的延长线和 P1F 的反向延长线交于Q。由于这两组光线是共轭的,所以

9、Q与Q点必是共轭点,QH与QH也是一对共轭面编辑课件结论:结论:主平面的横向放大率为主平面的横向放大率为1 1。在追迹光线时,出射光线在像方主平面上的投射高度一定与入射光线在物方主平面上的投射高度相等。QH与QH在光轴同侧,且高度都为h,故其横向放大率为:1光学系统光学系统E1E kBAO1OKP1P kFFQQHH-ff hh编辑课件四、实际光学系统的基点位置和焦距计算 例:三片型照相物镜1、结构参数:26.67189.67-49.6625.47 72.11-35.00 5.207.951.6 6.7 2.81.61401.64751.6140方法:在近轴区追迹平行于光轴的光线。编辑课件2、

10、求物镜像方焦距、像方焦点、像方主点起始坐标用六次近轴光线的光路计算公式和过渡公式求像距和倾角编辑课件像方焦距 像方主点像距和倾角注:l 或 l都是以球面顶点为起算原点!编辑课件3、求物镜物方焦距、物方焦点、物方主点起始坐标物距和倾角物方焦距物方主点物方焦点位置 编辑课件*计算结果的有关问题:1)像方焦距、像方焦点、像方主点:2)物方焦距、物方焦点、物方主点:解法2:1.6745编辑课件第三节 理想光学系统的物像关系 一个理想光学系统的主点和焦点的位置,利用光线通过它们后的性质,对物空间给定的点、线、面通过画图追踪典型光线求像,称为图解法求像。编辑课件1 1、可供选择的典型光线和可供利用的性质有

11、:、可供选择的典型光线和可供利用的性质有:1平行于光轴入射的光线,经过系统后过像方焦点。F HH2过物方焦点的光线,经过系统后平行于光轴。FHH编辑课件3 3倾斜于光轴的平行光线,经过系统后交于倾斜于光轴的平行光线,经过系统后交于像方焦平面上某一点。像方焦平面上某一点。-wFHH4 4自物方焦平面上一点发出的光束经系统后成自物方焦平面上一点发出的光束经系统后成倾斜于光轴的平行光束。倾斜于光轴的平行光束。FHH5共轭光线在主平面上的投射高度相等,即一对主平面的横向放大率为1。编辑课件1轴外点成像2、依据:理想的成像情况下,从一点发出的一束光线经光学系统作用后仍交于一点。3、方法:求物点发出的两条

12、特定光线在像方空间的光线,二者的交点为共轭像点。利用典型光线、主面性质编辑课件2轴上物点成像利用焦平面的性质解法1:解法2:编辑课件a)3轴上物点,经两个光具组成像 b)d)c)编辑课件实物成放大正立虚像,同侧AFF HHB2F 2FAB 例:理想光组的物方焦点F和像方焦点F,求物AB的像编辑课件ABFFHHAB求像?编辑课件BARRHHQQBFFA-xxf-fy-y-llx以物方焦点为原点的物距。称为焦物距。以F为起始点,x方向与光线方向一致为正。图中为-x以像方焦点为原点的像距。称为焦像距。以像方焦点为原点的像距。称为焦像距。以以F 为起始点,为起始点,x方向与光线方向一致为正。方向与光线

13、方向一致为正。图中为图中为+编辑课件l 物方主点H为原点的物距,称为主物距。方向与光线方向一致为正。反之为负图中-l 像方主点H为原点的像距,称为主像距。方向与光线方向一致为正。反之为负图中+BARRHHQQBFFA-xxf-fy-y-ll编辑课件一、牛顿公式由相似三角形BAF和 FHR可得由相似三角形QHF和 FABBARRHHQQBFFA-xxf-fy-y-ll编辑课件由以上两式得:以焦点为原点的物像位置公式,通常称为牛顿公式牛顿公式BARRHHQQBFFA-xxf-fy-y-ll一、牛顿公式编辑课件二、高斯公式物像位置也可相对主点的位置来确定,相应位置公式推导如下:代入牛顿公式并整理:BARRHHQQBFFA-xxf-fy-y-ll编辑课件两边同除得到以主点为原点的物像位置公式高斯公式BARRHHQQBFFA-xxf-fy-y-ll二、高斯公式编辑课件 特例:物像空间介质相同编辑课件三、理想光学系统两焦距之间的关系 共轴球面系统 的拉赫公式:近轴区近轴小角度:编辑课件(反射面的个数为k)自学:理想光学系统两焦距之间关系的一般形式:当 时,1包含偶数个反射面的系统,物方焦距和像方焦距异号;2包含奇数个反射面的系统,物方焦距和像方焦距同号。理想光学系统的拉赫公式:编辑课件

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号