三维激光扫描仪分类及原理.

上传人:pu****.1 文档编号:486192089 上传时间:2022-11-30 格式:DOCX 页数:6 大小:172.70KB
返回 下载 相关 举报
三维激光扫描仪分类及原理._第1页
第1页 / 共6页
三维激光扫描仪分类及原理._第2页
第2页 / 共6页
三维激光扫描仪分类及原理._第3页
第3页 / 共6页
三维激光扫描仪分类及原理._第4页
第4页 / 共6页
三维激光扫描仪分类及原理._第5页
第5页 / 共6页
点击查看更多>>
资源描述

《三维激光扫描仪分类及原理.》由会员分享,可在线阅读,更多相关《三维激光扫描仪分类及原理.(6页珍藏版)》请在金锄头文库上搜索。

1、三维激光扫描仪分类及原理地面三维激光扫描技术的出现是以三维激光扫描仪的诞生为代表,有人称“三维激光扫描系统是继GPS (Global Position System)技术以来测绘领域 的又一次技术革命。三维激光扫描技术是一种先进的全自动高精度立体扫描技 术,又称为“实景复制技术”,是继GPS空间定位技术后的又一项测绘技术革新, 将使测绘数据的获取方法、服务能力与水平、数据处理方法等进入新的发展阶段。 传统的大地测量方法,如三角测量方法,GPS测量都是基于点的测量,而三维激 光扫描是基于面的数据采集方式。三维激光扫描获得的原始数据为点云数据。点 云数据是大量扫描离散点的结合。三维激光扫描的主要特

2、点是实时性、主动性、 适应性好。三维激光扫描数据经过简单的处理就可以直接使用,无需复杂的费时 费力的数据后处理;且无需和被测物体接触,可以在很多复杂环境下应用;并且 可以和GPS等集合起来实现更强、更多的应用。三维激光扫描技术作为目前发展 迅猛的新技术,必定会在诸多领域得到更深入和广泛的应用。对空间信息进行可视化表达,即进行三维建模,通常有两类方法:基于图像 的方法和基于几何的方法。基于图像的方法是通过照片或图片来建立模型,其数 据来源是数码相机。而基于几何的方法是利用三维激光扫描仪获取深度数据来建 立三维模型,这种方法含有被测场景比较精确的几何信息。三维激光扫描仪的分类: 三维激光扫描仪按照

3、扫描平台的不同可以分为:机载(或星载)激光扫描系 统、地面型激光扫描系统、便携式激光扫描系统。三维激光扫描仪作为现今时效性最强的三维数据获取工具可以划分为不同 的类型。通常情况下按照三维激光扫描仪的有效扫描距离进行分类,可分为:(1) 短距离激光扫描仪:其最长扫描距离不超过3m, 一般最佳扫描距离为 0. 61. 2 m,通常这类扫描仪适合用于小型模具的量测,不仅扫描速度快且精 度较高,可以多达三十万个点精度至0.018 mm。例如:美能达公司出品的VIVID 910高精度三维激光扫描仪,手持式三维数据扫描仪FastScan等等,都属于这 类扫描仪。(2) 中距离激光扫描仪:最长扫描距离小于3

4、0 m的三维激光扫描仪属于中 距离三维激光扫描仪,其多用于大型模具或室内空间的测量。(3) 长距离激光扫描仪:扫描距离大于30m的三维激光扫描仪属于长距离三 维激光扫描仪,其主要应用于建筑物、矿山、大坝、大型土木工程等的测量。例 如:奥地利Riegl公司出品的LMS Z420i三维激光扫描仪和加拿大Cyra技术有 限责任公司出品的Cyrax 2500激光扫描仪等,属于这类扫描仪。(4) 航空激光扫描仪:最长扫描距离通常大于1公里,并且需要配备精确 的导航定位系统,其可用于大范围地形的扫描测量。之所以这样进行分类,是因为激光测量的有效距离是三维激光扫描仪应用范 围的重要条件,特别是针对大型地物或

5、场景的观测,或是无法接近的地物等等, 这些都必须考虑到扫描仪的实际测量距离。此外,被测物距离越远,地物观测的 精度就相对较差。因此,要保证扫描数据的精度,就必须在相应类型扫描仪所规 定的标准范围内使用。三维激光扫描仪工作原理:无论扫描仪的类型如何,三维激光扫描仪的构造原理都是相似的。三维激光 扫描仪的主要构造是由一台高速精确的激光测距仪,配上一组可以引导激光并以 均匀角速度扫描的反射棱镜。激光测距仪主动发射激光,同时接受由自然物表面 反射的信号从而可以进行测距,针对每一个扫描点可测得测站至扫描点的斜距, 再配合扫描的水平和垂直方向角,可以得到每一扫描点与测站的空间相对坐标。 如果测站的空间坐标

6、是已知的,那么则可以求得每一个扫描点的三维坐标。以 Riegl LMS -Z420i 三维激光扫描仪为例,该扫描仪是以反射镜进行垂直方向扫 描,水平方向则以伺服马达转动仪器来完成水平360度扫描,从而获取三维点云 数据。地面型三维激光扫描系统工作原理:三维激光扫描仪发射器发出一个激光脉 冲信号,经物体表面漫反射后,沿几乎相同的路径反向传回到接收器,可以计算 日标点P与扫描仪距离S,控制编码器同步测量每个激光脉冲横向扫描角度观测 值a和纵向扫描角度观测值B。三维激光扫描测量一般为仪器自定义坐标系。X 轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。 获得P的坐标。计算机图

7、1 扫描点坐标计算原理X = S cos P cos aPY = S cos P sin aPZ = S cos PP扫描头距离测量模块扫描控制模块41A/DA/D相位/时间反射强度V计算机总线控制器kk、rf微处理器存储器图 2 地面激光扫描仪测量的基本原理XI/1整个系统由地面三维激光扫描仪、数码相机、后处理软件、电源以及附属设 备构成,它采用非接触式高速激光测量方式,获取地形或者复杂物体的几何图形 数据和影像数据。最终由后处理软件对采集的点云数据和影像数据进行处理转换 成绝对坐标系中的空间位置坐标或模型,以多种不同的格式输出,满足空间信息 数据库的数据源和不同应用的需要。图3地面激光扫描

8、仪系统组成与坐标系目前阶段,需要通过两种类型的软件才能使三维激光扫描仪发挥其功能:一 类是扫描仪的控制软件;另一类是数据处理软件。前者通常是扫描仪随机附带的 操作软件,既可以用于获取数据,也可以对数据进行相应处理,如Riegi扫描仪 附带的软件RiSCAN Pro;而后者多为第三方厂商提供,主要用于数据处理Optech 三维激光扫描仪所用数据处理软件为Polyworks 10.0。三维建模的步骤:三维激光扫描系统采集的数据为点云数据,点云数据处理一般包含下面几个 步骤:噪声去除、多视对齐、数据精简、曲面重构。噪声去除指除去点云数据中扫描对象之外的数据。在扫描过程中,由于某些 环境因素的影响,比

9、如移动的车辆、行人及树木等,也会被扫描仪采集。这些数 据在后处理就要删除。多视对齐其指由于被测件过大或形状复杂,扫描时往往不能一次测出所有数 据,而需要从不同位置、多视角进行多次扫描,这些点云就需要对齐、拼接称为 多视对齐。点云对齐、拼接可以通过在物体表面布设同名控制点来实现。多视对 齐的实质是计算满足如下目标函数的旋转和平移变换矩阵 R,T:f (R,T) = minY R p + T一q 2(2)ii其中,p , q为需对齐的点云,上式是一个高度非线性问题。点云对齐的研ii究主要集中于寻求该问题的快速有效的求解方法。其中最著名的是Basl和Mokay 于 1992 年提出的 ICP 算法。

10、点云的数据精简指的是由于点云数据是海量数据,在不影响曲面重构和保持 一定精度的情况下需要对数据进行精简。常用的精简方法可采用下列方式:平均 精简原点云中每 n 个点保留 1 个;按距离精简删除一些点后使保留的点 云中点与点间的距离均大于某值。为了真实地还原扫描日标的本来面日,需要将扫描数据用准确的曲面表示出 来,这个过程叫曲面重构。曲面常见表示种类有:三角形网格,细分曲面,明确 的函数表示,暗含的函数表示,参数曲面,张量积B样条曲面,NURBS曲面,曲 化的面片等。经过曲面重构后,就可以进行三维建模,还原扫描日标的本来面日。点云数 据处理步骤基本完成,可以应用点云数据来解决问题。三维激光扫描技

11、术应用领域:最近几年,三维激光扫描技术不断发展并日渐成熟,目前三维扫描设备也逐 渐商业化,三维激光扫描仪的巨大优势就在于可以快速扫描被测物体,不需反射 棱镜即可直接获得高精度的扫描点云数据。这样一来可以高效地对真实世界进行 三维建模和虚拟重现。因此,其已经成为当前研究的热点之一,并在文物数字化 保护、土木工程、工业测量、自然灾害调查、数字城市地形可视化、城乡规划等 领域有广泛的应用。(1)测绘工程领域:大坝和电站基础地形测量、公路测绘,铁路测绘,河道测绘,桥梁、建筑物地基等测绘、隧道的检测及变形监测、大坝的变形监测、隧道地下工程结构、测量矿山及体积计算。(2)结构测量方面:桥梁改扩建工程、桥梁

12、结构测量、结构检测、监测、几 何尺寸测量、空间位置冲突测量、空间面积、体积测量、三维高保真建模、海上 平台、测量造船厂、电厂、化工厂等大型工业企业内部设备的测量;管道、线路 测量、各类机械制造安装。(3)建筑、古迹测量方面:建筑物内部及外观的测量保真、古迹(古建筑、 雕像等)的保护测量、文物修复,古建筑测量、资料保存等古迹保护,遗址测绘, 赝品成像,现场虚拟模型,现场保护性影像记录。(4)紧急服务业:反恐怖主义,陆地侦察和攻击测绘,监视,移动侦察,灾 害估计,交通事故正射图,犯罪现场正射图,森林火灾监控,滑坡泥石流预警, 灾害预警和现场监测,核泄露监测。(5)娱乐业:用于电影产品的设计,为电影

13、演员和场景进行的设计, 3D 游 戏的开发,虚拟博物馆,虚拟旅游指导,人工成像,场景虚拟,现场虚拟。2.三维激光扫描技术用于坝体变形监测可行性和优越性传统对大坝体的变形监测都是在堤坝的特征部位埋设变形监测点,在变形影 响范围之外埋设测量基准点,定期观测监测标志相对于基准点的变形量。传统基 于点的测量方式,包括 GPS 测量,特征点的选取直接关系到监测方案是否有效、 可靠。特征点的选取存在很大的人为性,如果特征点选取不当,监测点并不能最 大程度地反映变形体的最大变形,甚至可能存在变形方案失效。同时,监测点的 布设数量多少是传统基于点的测量方法中的一个重大瓶颈。一方面,我们想尽可 能多的布设监测点,另一方面,我们又不得不考虑到成本的问题。三维激光扫描 就可以解决传统基于点的测量方式中存在的诸多问题。一方面,我们对变形体进 行全方位的扫描,可以不用人为寻找变形体的特征部位,同时扫描的云数据可以 最大的满足我们对监测点数量的需求。但三维激光扫描仪并不是万能的,不是所 有的测量任务都可以用扫描仪来完成。在新技术的使用过程中,可能还会遇到很 多问题,这都需要经过以后的实践予以解决。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文 > 其它学术论文

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号