深基坑支护施工监测

上传人:cn****1 文档编号:485373095 上传时间:2023-05-10 格式:DOC 页数:8 大小:34KB
返回 下载 相关 举报
深基坑支护施工监测_第1页
第1页 / 共8页
深基坑支护施工监测_第2页
第2页 / 共8页
深基坑支护施工监测_第3页
第3页 / 共8页
深基坑支护施工监测_第4页
第4页 / 共8页
深基坑支护施工监测_第5页
第5页 / 共8页
点击查看更多>>
资源描述

《深基坑支护施工监测》由会员分享,可在线阅读,更多相关《深基坑支护施工监测(8页珍藏版)》请在金锄头文库上搜索。

1、精选优质文档-倾情为你奉上摘要 通过对基坑周围建筑物的沉降监测,研究深基坑开挖对周围建筑物的影响,对深基坑施工监测的特点、内容及监测设施,并重点对施工过程的监测方案进行了详细论述。引言随着国家城市化快速发展,为了尽可能有效地利用有限的城市土地资源,城市中高层和超高层建筑迅速发展,建筑物的基础越来越深。与此同时,城市地铁工程的大规模建设,也出现了大量的深基坑工程。深基坑的开挖很可能引发的基坑周边地表变形,影响相邻建筑,给人民生命和国家财产造成极大危害。需要加强基坑监测,保障基坑顺利施工、减小对周围环境的影响。1深基坑工程和基坑监测1.1深基坑工程1.1.1深基坑工程的现状近年来,随着高层建筑的兴

2、起与普及,深基坑工程越来越多。进入二十世纪90年代,我国的高层建筑迅猛发展,同时各地还兴建了许多大型地下市政设施、地下商场、地铁车站等,导致多层地下室逐渐增多,基坑开挖深度超过10m的比比皆是,甚至超过30m深。在实际工程中基坑支护结构除满足强度要求外,还应控制其变形,基坑的设计也应从传统的强度控制转变为变形控制,以免对周边环境造成破坏。城市的地铁车站深基坑和其它的地下工程一般都处在在密集的建筑群中,施工场地十分狭窄,有些工程的基础就紧挨着相邻建筑物或者构筑物的基础,在这种环境中来进行深基坑的施工,必然引起基坑四周地面与原有建筑物的沉降变形,从而引发基坑安全问题。基坑事故一般表现为支护结构位移

3、过大、基坑周边的道路开裂或者塌陷、基坑周围的地下管网线路因位移过大而破坏、相邻的周边建筑因不均匀沉降等原因而开裂甚至倒塌等等。造成这些事故的主要原因已不再是支护构件的强度破坏,而是因为支护结构的变形过大。虽然近年来很多学者和工程技术人员已经在基坑工程设计的变形控制方面作了很多研究,但在寻找基坑开挖过程中有关基坑支护结构变形和近临建筑变形两者之间关系的规律方面仍然存在很多要解决的问题。1.1.2深基坑工程的特点(1)深基坑工程具有很强的区域性岩土工程区域性强,岩土工程中的深基坑工程,区域性更强。如黄土地基、膨胀土地基、砂土地基、软粘土地基等工程地质和水文地质条件不同的地基中,基坑工程差异性很大。

4、即使是同一城市不同区域也有差异。因此,深基坑开挖要因地制宜,根据本地具体情况,具体问题具体分析,而不能简单地完全照搬外地的经验。(2)深基坑工程具有很强的个性深基坑工程不仅与当地的工程地质条件和水文地质条件有关,还与基坑相邻建筑物、构筑物及市政地下管网的位臵、抵御变形的能力、重要性以及周围场地条件有关。因此,对深基坑工程进行分类,对支护结构允许变形规定统一的标准是比较困难的,应结合地区具体情况具体运用。(3)深基坑工程具有较强的时空效应深基坑的深度和平面形状,对深基坑的稳定性和变形有较大影响。在深基坑设计中,要注意深基坑工程的空间效应。土体蠕变体,特别是软粘土,具有较强的蠕变性。作用在支护结构

5、上的土压力随时间变化,蠕变将使土体强度降低,使土坡稳定性减小,故基坑开挖时应注意其时空效应。(4)深基坑工程具有较强的环境效应深基坑工程的开挖,必将引起周围地基中地下水位变化和应力场的改变,导致周围地基土体的变形,对相邻建筑物、构筑物及市政地下管网产生影响。影响严重的将危及相邻建筑物、构筑物及市政地下管网的安全与正常使用。大量土方运输也对交通产生影响。所以应注意其环境效应。(5)深基坑工程具有较大工程量及较紧工期由于深基坑开挖深度一般较大,工程量比浅基坑增加很多。抓紧施工工期,不仅是施工管理上的要求,它对减小基坑变形,减小基坑周围环境的变形也具有特别的意义。(6)深基坑工程具有较大的风险性深基

6、坑工程是个临时工程,安全储备相对较小,因此风险性较大。由于深基坑工程技术复杂,涉及范围广,事故频繁,因此在施工过程中应进行监测,并应具备应急措施。深基坑工程造价较高,但有时临时性工程,一般不愿投入较多资金,一旦出现事故,造成的经济损失和社会影响往往十分严重。(7)深基坑工程具有较高的事故率深基坑工程施工周期长,从开挖到完成地面以下的全部隐蔽工程,常常经历多次降雨、周边堆载、振动等许多不利条件,安全度的随机性较大,事故的发生往往具有突发性。1.1.3深基坑工程存在的问题基坑支护工程的设计与施工,既要保证整个支护结构在施工过程中的安全,又要控制结构和周围土体的变形,以保证周围环境(相邻建筑物和地下

7、公共设施等)的安全。因此,如何确保基坑工程的安全可靠、经济合理、实用可行是当前现代化城市建设中一个非常重要和迫切的问题。特别是在21世纪,随着超大基坑工程的要求越来越高,随之出现的问题也越来越多。下面就深基坑工程存在的几个问题进行讨论:(1)设计阶段存在的问题基坑工程结构选型不合理分析众多深基坑支护工程事故发生的原因,其中最主要的还是基坑工程结构选型不合理,考虑的因素不够全面。基坑支护及撑锚方法较多,为达到同一目的,可以有多种方法,而每一种方法都有其独特的优点,有的速度快,有的投资少,有的噪音小等。基坑工程结构设计土压力的确定基坑支护结构设计计算包括外力(土压力及地基超载)和支护结构内力(弯矩

8、和剪力)、支撑体系的设计计算、基坑整体稳定性和局部稳定性、地基承载力、支护结构顶部位移、结构和地面的变形以及软弱土层的局部加固、对相邻建筑的影响等诸方面的计算。目前的支护结构设计中,一般都以古典的库伦公式或朗肯公式作为计算土压力的基本公式。土压力大小及分布规律的研究是一项极为复杂的课题,它与支护结构的形式、刚度、土的性状、地下水状况等因素有关,现有库仑和朗肯理论均存在一定的局限性。(2)施工阶段存在的问题深基坑工程数量、规模、分布急剧增加,导致深基坑施工技术以及在施工过程中现场监测技术等还有待尽快提高,而且施工管理不力,施工资质限制不严,所以在施工中暴露出来许多问题值得注意。搞好基坑挖土还需要

9、施工、业主、设计及监测各方面配合和协作。基坑施工中地下水的处理不当基坑施工中,地下水的处理是一个难点,因土质与地下水位的差异,基坑开挖施工的方法也随之不同,尤其是在沿海等高水位地区或者表层滞水很丰富的地区,深基坑工程施工中地下水的处理基本是整个工程成败的关键。所以,在很多失败的深基坑工程中,有很多是因为基坑施工中地下水的降排水没有处理好,排水主要解决上部土层的滞水和降雨积水的疏排,降水包括采用轻型井点、喷射井点和深井井点降水等。降低地下水位可能引起地面沉降,将对环境造成不良影响,尤以深井降水影响最大,会造成基坑周围地表和建筑物沉降增大。信息化施工的程度不高由于深基坑工程的地质条件复杂多变,加之

10、特殊的受力特点,使其在工程设计阶段的预估值与其在施工过程中的实际值存在一定的差异.。因此,深基坑工程的安全不仅取决于合理的设计、施工,而且取决于贯穿在工程设计、施工全过程的安全监测.安全监测是深基坑工程安全的重要保证条件之一,基坑监测与工程的设计、施工也被称为深基坑工程施工的三大基本要素。基坑工程在发生事故前或多或少都有预兆,因为基坑工程支护结构的破坏要经历一个由量变到质变的过程,通过信息化施工可以不断优化设计方案,确保基坑开挖安全可靠而又经济合理.基坑信息化施工是指将所采集的信息,经过处理后与预测结果比较,通过反分析推求较符合实际的土质参数,并利用所推求的土质参数再次预测下一施工阶段围护结构

11、及土体的性状,又采集下一施工阶段的相应信息。如此反复循环,不断采集信息,不断修改设计并指导施工,将设计臵于动态过程中.通过分析预测指导施工,通过施工信息反馈设计,使设计及施工逐渐逼近实际从而排除险情,实现最佳工程。这是一项很有发展前途的新技术,具有代价小成效大的优点,目前在一些工程中已初步应用。目前仍没有进入普及阶段关键是如下两个原因:一是专家匮乏;二是反馈信息速度慢。但是随着计算机技术进步和科技的发展,这些问题一定会迎刃而解。1.1.4深基坑工程的发展趋势可以预见,随着人类和经济的发展,地面的资源空间会越来越紧张,地下空间资源的开发与利用是大势所趋。科学家预言,21世纪是“地下空间”的世纪,

12、21世纪末将有1/3的人口穴居地下。城市建设“向地下索取空间”是城市可持续发展的必由之路。地下空间的开发,必然会遇见深基坑工程,由此可见,今后会有越来越多的深基坑工程。正如上文所说深基坑工程还存在许多问题,对深基坑的施工技术还不成熟,这就要求我们不断地加大对深基坑工程的研究,不断的积累对深基坑施工的经验。同时也要加大对深基坑的监测,及时地把监测数据反馈于施工方,指导施工方施工。1.2基坑监测1.2.1基坑监测的重要性和意义(1)监测的定义所谓基坑监测是指在基坑开挖施工过程中,借助仪器设备和其它一些手段对围护结构、周围环境(土体、建筑物、构筑物、道路、地下管线等)的应力、位移、倾斜、沉降、开裂及

13、对地下水位的动态变化、土层孔隙水压力变化等进行综合监测。(2)基坑监测的重要性和意义深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时,基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水的渗漏,这些因素又是导致土体变形加剧的原因。因此,在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并

14、采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。检验设计假设和参数的正确性,指导基坑开挖和支护结构的施工。基坑支护结构设计尚处于半理论半经验的状态,因此,在施工过程中需要知道现场实际的受力和变形情况。验证原设计和施工方案正确性,同时可对基坑开挖到下一个施工工况时的受力和变形的数值和趋势进行预测,并根据受力和变形实测和预测结果与设计时采用的值进行比较,必要时对设计方案和施工工艺进行修正。确保基坑支护结构和相邻建筑物的安全。在深基坑开挖与支护结构施工过程中,必须避免产生过大变形而引起邻近建筑物的倾斜或开裂,防止邻近管线的渗漏等。在工程实际中,基坑在破坏前,往往会在基坑侧向的不同部位上出现较

15、大的变形,或变形速率明显增大。因此,基坑开挖过程中进行周密的监测,在建筑物和管线的变形在正常的范围内时可保证基坑的顺利施工;在建筑物和管线的变形接近警戒值时,可以及时采取对建筑物和管线本体进行保护的技术应急措施,在很大程度上避免或减轻破坏的后果。积累工程经验,为提高基坑工程的设计和施工的整体水平提供依据。现行设计分析理论尚未完全成熟。现场监测不仅确保了本基坑工程的安全,在某种意义上也是一次现场原位实体试验,所取得的数据是结构和土层在工程施工过程中真实反应,是各种复杂因素影响和作用下基坑系统的综合体现,因而也为该领域的科学和技术发展积累了第一手资料。1.2.3深基坑施工监测的特点 (1)时效性 普通工程测量一般没有明显的时间效应。基坑监测通常是配合降水和土方开挖过程,有鲜明的时间性,测量结果是动态变化的。深基坑施工中监测需随时进行,在测量对象变化快的关键时期,可能每天需进行数次。基坑监测的时效性要求对应的方法和设备具有采集数据快、全天候工作的能力,甚至适应夜晚或大雾天气等严酷的环境条件。(2)高精度 普通工程测量中误差限值通常在数毫米,例如60m以下建筑物在测站上测定的高差中误差限值为2.5mm,而正常情况下基坑施工中的环境变形速率可能在0.1mm/d以下,要测到这样的变形精度,普通测量方法和仪器是不能胜任的,因此基坑施工中的测量通常采用一

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号