电磁场与电磁波(第三版)课后答案第1章

上传人:枫** 文档编号:473251952 上传时间:2024-01-23 格式:DOC 页数:9 大小:621.51KB
返回 下载 相关 举报
电磁场与电磁波(第三版)课后答案第1章_第1页
第1页 / 共9页
电磁场与电磁波(第三版)课后答案第1章_第2页
第2页 / 共9页
电磁场与电磁波(第三版)课后答案第1章_第3页
第3页 / 共9页
电磁场与电磁波(第三版)课后答案第1章_第4页
第4页 / 共9页
电磁场与电磁波(第三版)课后答案第1章_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《电磁场与电磁波(第三版)课后答案第1章》由会员分享,可在线阅读,更多相关《电磁场与电磁波(第三版)课后答案第1章(9页珍藏版)》请在金锄头文库上搜索。

1、第一章习题解答1.1 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。解 (1)(2)(3)11(4)由 ,得 (5)在上的分量 (6)(7)由于所以 (8) 1.2 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。解 (1)三个顶点、和的位置矢量分别为 ,则 , ,由此可见故为一直角三角形。 (2)三角形的面积 1.3 求点到点的距离矢量及的方向。解 ,则 且与、轴的夹角分别为1.4 给定两矢量和,求它们之间的夹角和在上的分量。解 与之间的夹角为 在上的分量为 1.5 给定两矢量和,求在上的分量。解 所

2、以在上的分量为 1.6 证明:如果和,则;解 由,则有,即由于,于是得到 故 1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。解 由,有故得 1.8 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。解 (1)在直角坐标系中 、故该点的直角坐标为。(2)在球坐标系中 、故该点的球坐标为1.9 用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。解 (1)在直角坐标中点处,故(2)在直角坐标中点处,所以故与构成的夹角为 1.10 球坐标中两个点和定出两个

3、位置矢量和。证明和间夹角的余弦为解 由 得到 1.11 一球面的半径为,球心在原点上,计算: 的值。解 1.12 在由、和围成的圆柱形区域,对矢量验证散度定理。解 在圆柱坐标系中 所以 又 故有 1.13 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。解 (1)(2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 1.14 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。解 又在球坐标系中,所以1.15 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求

4、对此回路所包围的曲面积分,验证斯托克斯定理。解 又 所以 故有 1.16 求矢量沿圆周的线积分,再计算对此圆面积的积分。解 1.17 证明:(1);(2);(3)。其中,为一常矢量。解 (1)(2) (3)设,则,故1.18 一径向矢量场表示,如果,那么函数会有什么特点呢? 解 在圆柱坐标系中,由 可得到 为任意常数。在球坐标系中,由 可得到 1.19 给定矢量函数,试求从点到点的线积分:(1)沿抛物线;(2)沿连接该两点的直线。这个是保守场吗? 解 (1) (2)连接点到点直线方程为 即 故 由此可见积分与路径无关,故是保守场。1.20 求标量函数的梯度及在一个指定方向的方向导数,此方向由单

5、位矢量定出;求点的方向导数值。 解 题1.21图故沿方向的方向导数为 点处沿的方向导数值为1.21 试采用与推导直角坐标中相似的方法推导圆柱坐标下的公式。解 在圆柱坐标中,取小体积元如题1.21图所示。矢量场沿方向穿出该六面体的表面的通量为同理因此,矢量场穿出该六面体的表面的通量为故得到圆柱坐标下的散度表达式 1.22 方程给出一椭球族。求椭球表面上任意点的单位法向矢量。解 由于 故椭球表面上任意点的单位法向矢量为1.23 现有三个矢量、为 (1)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函数的旋度表示?(2)求出这些矢量的源分布。解(1)在球坐标系中 故矢量既可以由一个标量

6、函数的梯度表示,也可以由一个矢量函数的旋度表示;在圆柱坐标系中 故矢量可以由一个标量函数的梯度表示;直角在坐标系中 故矢量可以由一个矢量函数的旋度表示。 (2)这些矢量的源分布为 ,;,;,1.24 利用直角坐标,证明解 在直角坐标中1.25 证明解 根据算子的微分运算性质,有式中表示只对矢量作微分运算,表示只对矢量作微分运算。由,可得同理 故有 1.26 利用直角坐标,证明解 在直角坐标中所以1.27 利用散度定理及斯托克斯定理可以在更普遍的意义下证明及,试证明之。解 (1)对于任意闭合曲线为边界的任意曲面,由斯托克斯定理有题1.27图由于曲面是任意的,故有(2)对于任意闭合曲面为边界的体积,由散度定理有其中和如题1.27图所示。由斯托克斯定理,有, 由题1.27图可知和是方向相反的同一回路,则有 所以得到 由于体积是任意的,故有

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 高等教育 > 习题/试题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号