检测系统综合设计课程设计说明书温度控制系统

上传人:公**** 文档编号:472435512 上传时间:2023-03-31 格式:DOC 页数:38 大小:518KB
返回 下载 相关 举报
检测系统综合设计课程设计说明书温度控制系统_第1页
第1页 / 共38页
检测系统综合设计课程设计说明书温度控制系统_第2页
第2页 / 共38页
检测系统综合设计课程设计说明书温度控制系统_第3页
第3页 / 共38页
检测系统综合设计课程设计说明书温度控制系统_第4页
第4页 / 共38页
检测系统综合设计课程设计说明书温度控制系统_第5页
第5页 / 共38页
点击查看更多>>
资源描述

《检测系统综合设计课程设计说明书温度控制系统》由会员分享,可在线阅读,更多相关《检测系统综合设计课程设计说明书温度控制系统(38页珍藏版)》请在金锄头文库上搜索。

1、武汉理工大学检测系统综合设计课程设计说明书前 言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测 、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处

2、理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等。智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度

3、数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。 目 录前 言1目

4、 录21. 总体方案设计31.1 系统的工作原理31.2 系统的方案比较41.3 系统方案的确定41.3.1 单片机芯片的选择41.3.2 显示模块的选择51.3.3数据采集系统的选择51.3.4 复位电路61.3.5 通信接口电路的选择71.3.6 电路设计最终方案72 系统硬件设计82.1 系统硬件概述82.2 AT89S52最小系统模块设计82.3 振荡源和复位电路设计112.3.1 复位电路112.3.2 振荡源电路122.4 显示模块设计122.5 串行接口模块设计142.6 温度采集模块设计152.7 报警电路设计172.8 加热电路设计183.系统软件设计193.1 主程序流程图

5、193.2 外部中断的应用203.3 延时程序的处理214. 心得体会22参考文献23附录1:程序24附录2:英文资料翻译301. 总体方案设计随着电子产业的高速化发展,电子产品的集成化程度也越来越高,智能化的产品也日渐增多,温度测控系统也从传统化的产品向智能化的产品方向发展。 本次课程设计中,我设计的就是一个温度控制系统,其设计思想是利用单片机作为主要的控制器件,LED数码管做为电路的显示部分,外加报警电路和自动加热电路,当温度低于设定值20度时,加热器加热。加热到20度时,加热器自动停止加热。当温度高于设定值25度时,报警电路报警。从而实现自动控制温度在20到25度之间。1.1 系统的工作

6、原理在温控系统中,需要将温度的变化转化为对应的电信号的变化,选用AT89S52单片机为中央处理器,通过温度传感器对空气进行温度采集,将采集到的温度信号传输给单片机,再由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动电机加热或降温循环对空气进行处理,从而模拟实现空调控制单元的工作情况。工作流程说明如下: 开始,先接通电源,LED就自动显示出当前温度。当温度值低于设定值20度时,加热器加热。加热到20度时,加热器自动停止加热。当温度高于设定值25度时,报警电路报警。系统的主要技术指标如下:测温范围:-10+100;温度分辨率:正负0.5.系统的原理框架图,如图1所示。单片机显示器报警

7、电路加热电路温度传感器PC机图1 系统原理框图1.2 系统的方案比较在日常生活中,测量温度的方案有很多,智能温度测控系统的设计方法也不胜枚举。有工业级别的温度控制系统,有商业的温度控制系统以及民用的温度控制系统。由于身边的条件以及元器件的限制,在这里选择设计民用的智能温度控制系统。方案一:以热电偶作为温度传感器,AD模数转换,LED作为显示器,采用矩阵键盘,用AT89C51作为主控芯片。在该方案中,热电偶的测量范围广,而且精度也很好,其灵敏度也很高,但是其价格高,还需要增加相应的外围电路,给硬件电路的设计带来了一定的困难,该温度传感器实用于工业级别的温度控制,而本系统是民用级别的,测量的范围也

8、不高;AD模数转换的转换速率和分辨率也会给测量的温度值带来一定的影响;LED显示,则过于传统化,价格也较贵,其显示的位数很有限,若要增加功能,会给设计带来很大的困难。方案二:以DS18B20作为温度传感器,LED数码管作为显示屏,用AT89S52作为主控芯片。在该方案中,温度传感器DS18B20在日常生活中应用很广泛,器价格较之热电偶也很便宜,测量的精度也能达到民用的要求,其集成化的程度更高,不需要外围的处理电路。即可将模拟信号转换为电信号;LED数码显示屏读数方便,而且比较清晰;主控芯片采用AT89S52的兼容的电平兼容性更好,可利用的资源也更多。1.3 系统方案的确定1.3.1 单片机芯片

9、的选择 在单片机控制中,常用的ATMEL公司单片机种类有AT89C51、AT89C52、AT89S51、AT89S52,都兼容MCS-51单片机。对于AT89C51,是一种带4K字节闪存可编程可擦除只读存储器(FPEROMFlash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS 8位微处理器,1288位内部RAM,32可编程I/O线,两个16位定时器/计数器,5个中断源等主要特性。相比而言,AT89C52有8K的ROM,256B的RAM,还增加一个定时器/计数器2,自然价格比C51略高。而相对而言,S系列的单片机具有在线编程下载

10、(ISP)功能和看门狗,而且运行的速度的最高频率达到33MHZ,使得运行速度更快,自然价格比C 系列的要高2元左右。但是当在对电路进行调试时,由于程序的错误修改或对程序的新增功能需要烧入程序时,S系列的不需要对芯片多次拔插,节省了调试的时间。综合考虑以上种种因素,由于考虑到产品的成本,在同样能完成我们所要求的功能时,自然会选择容易操作和扩展的AT89S52,这样更容易把产品推向市场。但是在实验室的的调试中,我们依然可以用AT89C51,这样就方便了我们的硬件调试,同样降低了开发产品的成本。1.3.2 显示模块的选择常见的文字、图像显示屏主要有LED(Light Emitting Diode )

11、显示屏,LCD(Liquid Crystal Display),LED点阵数码管显示。LED显示器与LCD显示器相比,LED在亮度、功耗、可视角度和刷新速率等方面,都更具优势。LED与LCD的功耗比大约为10:1,而且更高的刷新速率使得LED在视频方面有更好的性能表现,能提供宽达160的视角,可以显示各种文字、数字、彩色图像及动画信息,也可以播放电视、录像、VCD、DVD等彩色视频信号,多幅显示屏还可以进行联网播出。因此本次显示模块设计中选用LED数码显示管。1.3.3数据采集系统的选择本课程设计要求对温度进行测量,待测量一般不能直接被转换成数字量,通常要进行放大、特性补偿、滤波等环节的预处理

12、。被测信号往往因为幅值较小,而且可能还含有多余的高频分量等原因,不能直接送给A/D转换器,需对其进行必要的处理,即信号调理。如对信号进行放大、衰减、滤波等。为减少电路的繁复,故本测控系统数据采集系统中采用集成温度采集元件与A/D转换元件配合使用。硬件选择为DS18B20数字温度传感器。数据采集方式有顺序控制数据采集和程序控制数据采集。方案一:顺序控制数据采集,顾名思义,它是对各路被采集参数,按时间顺序依次轮流采样。系统的性能完全由硬件设备决定。在每次的采集过程中,所采集参数的数目、采样点数、采样速率、采样精度都固定不变。若要改变这些指标,需改变接线或更换设备方能实现。方案二:程序控制数据采集,

13、由硬件和软件两部分组成。,据不同的采集需要,在程序存储器中,存放若干种信号采集程序,选择相应的采集程序进行采集工作,还可通过编新的程序,以满足不同采样任务的要求。由于顺序控制数据采集方式缺乏通用性和灵活性,所以本设计中选用程序控制数据采集方式。1.3.4 复位电路 1.复位电路 单片机在开机时都需要复位,以便中央处理器CPU以及其他功能部件都处于一个确定的初始状态,并从这个状态开始工作。AT89S51的RST引脚是复位信号的输入端。复位电平是高电平有效,持续时间要有24个时钟周期以上。本系统中单片机时钟频率为12MHz则复位脉冲至少应为2us。 方案一:上电复位电路上电瞬间,RST端的的电位与

14、Vcc相同,随着电容的逐步充电,充电电流减小,RST电位逐渐下降。上电复位所需的最短时间是振荡器建立时间加上二个机器周期,在这段时间里,振荡建立时间不超过10ms。复位电路的典型参数为:C取10uF,R取8.2k,故时间常数=RC=10108.210=82ms以满足要求。 方案二:外部复位电路按下开关时,电源通过电阻对外接电容进行充电,使RES端为高电平,复位按钮松开后,电容通过下拉电阻放电,逐渐使RET端恢复低电平。 方案三:上电外部复位电路 典型的上电外部复位电路是既具有上电复位又具有外部复位电路,上电瞬间,C与Rx构成充电电路,RST引脚出现正脉冲,只要RST保持足够的高电平,就能使单片

15、机复位。一般取C=22uF,R=200,Rx=1k,此时=2210110=22ms当按下按钮,RST出现5=4.2V时,使单片机复位。本设计采用方案三。2.振荡源 在AT89S52内部有一个用于构成振荡器的高增益反相放大器。引脚XTAL1(19)、XTAL2(18)分别是此放大器的输入端和输出端。方案一:内部方式与作为反馈元件的片外晶体或陶瓷谐振器一起组成一个自激振荡器。方案二:外部方式外部振荡器信号的接法与芯片类型有关。CMOS工艺的MCU其XTAL1端接外部时钟信号,XTAL2端可悬空。HMOS工艺的MCU则XTAL2端接外部时钟信号,XTAL1端须接地。本设计采用方案一。1.3.5 通信接口电路的选择1.传输方式的选择串行通信有同步和异步两种工作方式。方案一:同步方式要求发送与接受保持严格同步,由于串行传输逐位按顺序进行,为了约定数据是由哪一位开始传输,需设定同步字符。此方式传输速度快,但硬件复杂。方案二:异步方式,规定了数据传输格式,每个数据均以相同的帧格式传送,每帧信息由起

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 工作计划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号