《常规压力对采用非牛顿学流体润滑的光滑碟片》由会员分享,可在线阅读,更多相关《常规压力对采用非牛顿学流体润滑的光滑碟片(27页珍藏版)》请在金锄头文库上搜索。
1、附录1 中文译文常规压力对采用非牛顿学流体润滑的光滑碟片表面的作用陈好升,李疆,陈大荣,王佳道1.国家摩擦学研究所,清华大学,中国北京,1000842.北京科技大学,机械工程系,中国,100083摘要:为了研究与分析非牛顿学流体在润滑光碟表面时常规压力所产生的影响,涉及这个常规作用力的一种修正的瑞诺德公式被建立。公式中对于第一常规压力不同的表述源自于瑞林-埃里克森第二流体定律和流体冲力公式。光碟表面润滑的成果被计算从而用在了的瑞诺德分析公式之中。在持久稳定的薄层润滑作用之下,常规的压力和负载受到正常速度的限制,因此在计算中可以直接省略。当光滑流体的高度变化或者润滑膜的厚度下降时,常规的速度下降
2、,故此此时需要在计算中考虑到第一常规压力的不同所产生的影响。核心词:非牛顿学流体、第一常规压力差分、磁性数据存储系统。1.简介正如德布鲁尼和波致所说的那样,一种非牛顿润滑是在磁性记录系统中用来避免干燥接触。事实已经证明了通过引入非牛顿学流体以高的剪切速度进行切向润滑是可以达到在光滑的覆盖表面之下明显减少压力的形成的效果。为了可以明确阐明非牛顿学流体在重要碟片表面的润滑作用,李旺龙提供了一种平均瑞诺德公式并且指出幂律流体的流动影响效率在负荷能力方面比表面粗糙度更加明显。非牛顿流体的性能在对磁性光碟表面进行润滑时是重要的影响因素。常规压力作用是非牛顿学流体的特性。许多研究成果都证明了在许多润滑中常
3、规压力的作用均有明显的增长,第一常规压力差分比第二常规压力差分更加明显。常规压力的作用在润滑中需要被分析,第一常规压力差分的计算措施也需要去研究。在这篇论文中,第一常规压力差分是一种具有可伸缩性的非牛顿流体,就像麦克斯韦尔流体,都源自于被建立的涉及常规压力的润滑公式。数字思想被用在计算光碟表面的润滑作用之中。2.第一常规压力的解释第一常规压力来源于瑞林-埃里克森流体公式(1)。式中,是压力,是剪切压力的张量,是剪切速率的张量,是流体粘质系数,是黏弹性流体的第二定律系数,是由材料的时间衍生出来的。公式(1)合用于随机等同系统。在这篇论文中,卡特森等同系统被抛出在外,不以考虑。在等同系统中的非牛顿
4、流体的微观单位在图1中已经给出,(x,y,z)是修正等同系统中用来计算用的,(z,y,x)是参照等同系统而(1,2,3)是下面等同系统中合用于微观单位的。被定义为经下等同系统的微观单位的角速度。这样的话,角速度的微观单位就是。Figure 1. Maxwell micro unit in the coordinate systems下面的等同系统(1,2,3)是一种刚性的卡特森等同系统。等同的来源被定义在了微观单位上,随着单位的移动和转动而进行等同的移动和转动。下列等同的方向常常和剪切速度的张量的方向是一致的。采用普哥理论,材料时间的来源应当可以被瑞林-埃里克森剪切速度和朱漫协方差衍生公式推导
5、出来,在下列等同系统中,新的张量被表达为从而出目前公式(2)中,并且它还可以有在任意的等同系统中。是该方向上的速度。当润滑是抱负的粘性流体的时候,下列等同系统中的重要轴的方向与相对等同系统中的重要压力轴的方向是一致的。这就意味着并且第一常规压力方差也是零。材料时间的衍生在图(2)中被定义为下列等同系统。如果材料时间的衍生是相对等同的话,下列等同系统中的微观单位的角度就应当被添加进来。从公式(4)中我们可以得出,常规压力可以用公式(5)来表达。在公式(5)中,是液体的粘性。公式右边的第二项表达出了粘性对于常规压力的作用。第三项表达出了第一常规压力方差的作用。在公式(6)中得到了体现。是缓和时间,
6、是粘性方差。第四项表达出了第二常规压力方差的作用。一般人们觉得第二常规压力方差的作用远远不不小于第一常规压力方差,第四项是一种省略项,第一常规压力方差在公式(7)中表达出来了。在润滑中,润滑膜的厚度远远不不小于其他的尺寸。比较占有支配地位的粘性和粘性变化率而言,在公式(7)中都被忽视了,第一常规压力方差被简化成了公式(8)。在公式(8)中,是缓和时间,是下列相对等同的粘性角度,是由非牛顿学流体的弹性所引起的,被觉得是微观单位的黏弹性的自然频率。因此,第一常规压力方差被表达为公式(9).总的来说,第一常规压力方差的定义如下式所示:是第一常规压力方差的功能,通过公式(9)和(10),它可以表达为公
7、式(11)。3. 瑞诺德公式中涉及第一常规压力方差为了分析第一常规压力在润滑中的作用,一种修正模式涉及了第一常规压力方差的瑞诺德公式一方面在稳定的薄片状润滑的条件下被建立起来。在重要光碟表面的润滑,随机相似系统中的剪切力和常规压力在等同转化之后的体现式正如公式(12)所示。公式(12)来源于等同的变化,另一种公式体现出了来自于动量公式之中的压力之间的关系,如公式(13)所示:在实际的润滑条件下,公式(13)被简化为某些最基本的假设,动量公式变成了公式(14)所示的形式。(1)惯性力和外力不被考虑时,(2)流体不可以被压缩,(3)和重要流体比较而言被忽视了。从公式()和公式()可知,一种修正的瑞
8、诺德公式浮现了并且被表达到为公式(15)的样式。在公式(15)中,是压力,是表面速度,是润滑膜的厚度,是常规润滑膜的运动速度。是相对量。简朴的几何学示意图如图2所示。4.润滑的数学成果在这一部分中,数学思想被用于润滑成果的计算之中。基于成果而言,对受压力物体的第一常规压力方差及其负载能力都得到分析。用到的分析公式在公式(16)中都已经给出了。在公式(16)中,无量纲的参数都阐明如下。为了简化计算,在稳定的薄片润滑中,其她因素诸如温度等都被觉得是一种常量。超放松理论在这里被应用。4.1在稳定的薄片润滑中的数学成果非牛顿流体的第一常规压力方差将作用在压力轮廓及其负载能力。在b/2的中间部分的压力分
9、布已表达在图3中。是润滑中的无量纲压力,并不受第一常规压力方差的影响。而是在第一常规压力方差作用之下的无量纲压力。图4反映出了负载能力。在图4中,是在第一常规压力方差作用之下的无量纲负载能力,是不受第一常规压力方差的影响的无量纲负载能力。是牛顿学流体的无量纲负载能力。从图3和图4显示的成果我们可经得出,在常规压力的作用之下润滑时压力和负载能力均有所增长。但是增长量并不是很明显。因此在润滑计算的过程中可以忽视常规压力的影响和作用。在实际润滑之中,第一常规压力方差的作用是增长负载能力,因此,忽视第一常规压力方差是一种安全的设计思想。图3. 受压力作用的物体中第一常规压力差分的作用图4. 第一常规压
10、力对负载能力的作用从图4中,我们可以发现负载能力的变化是由粘性的变化所导致的。例如,在麦克斯韦尔流体润滑中,不同的粘性重要是由剪切速度所导致的。粘性的变化是影响润滑作用的重要因素,第一常规压力方差的作用是在小范畴内增长负载能力。第一常规压力方差的作用受到了两个因素的影响。一种是材料的力学性能。从公式(11)中我们可以看出,第一常规压力方差的决定性因素是自然频率和非牛顿学流体的缓和时间。同步,速度的微分受到了剪切速度的影响。另一种因素是常规速度。在公式(16)中,约第一常规压力方差的功能受到了常规速度的约束。一般在理论分析中,常规速度考虑的很少,与理论速度相比,一般也可以被忽视。常规速度削弱了第
11、一常规压力方差的作用。例如,在计算中被使用的变量,无量纲第一常规压力方差的数值是-36,但是计算得出的实际速度却连0.0021都不到,因此在公式(16)中右边的第二项的作用远远不不小于几何图形的作用。在常规速度足够大的状况下,第一常规压力方差的作用在数学计算中就需要被考虑了。受压力物体在不同的无量纲常规速度在图5中被表达出来了。随着常规速度的增长,第一常规压力作用方差的作用在受压力物体上变得越来越重要。当无量纲常规压力是表面速度的1%的时候,也就是说v=0.01,压力增量的峰值大概为5%。图5. 受压力物体在常规压力方差下的作用常规压力在真正的磁性光碟表面的润滑的时候需要被考虑。例如,在与光碟
12、有关的实验中,光碟的飞行高度是变化的。同样,事实也证明了在受驱动的实验之中,润滑膜的厚度也下降了。涉及常规速度的作用的瑞诺德公式需要被修正。4.2常规速度的作用常规速度不仅影响第一常规压力方差的作用,但是同样导致挤压作用。由各项可以推出,瑞诺德公式可以被表达为公式(17)的形式。在公式(17)中,常规速度的润滑可以被表达为公式(18)。由公式(18)和公式(17),用于数学计算的公式可以表达为公式(19)。公式(19)右边的第一项表达出了几何学的作用,第二项表达出了扩展作用,第三项代表了第一常规压力差分的作用。当v=0.01U,考虑到不同影响的受压力物体在图6中已经表达出来了。在图6中,代表受
13、压力物体在几何润滑和第一常规压力方差的作用下的作用。并且随着正常润滑速度的增长,第一常规压力方差的影响增大,在图6中展示出的成果中,第一常规压力方差是不应当被忽视的。从成果来看,我们同样可以找出伸长作用也比第一常规压力方差的作用更加重要。如图6所示,张量作用所引起的压力的峰值比第一常规压力差分所引起的压力峰值效果要明显的多。因此,在光碟表面的润滑中,润滑张量的作用和第一常规压力差分都应当被考虑。5.结论当一种非牛顿学流体润滑被用在磁性光碟表面润滑的时候,它们的常规压力作用可以通过涉及第一常规压力差分功能的修正的瑞诺德公式来计算。对于第一常规压力差分的解释源自于瑞林-埃里克森公式和动量公式,相似
14、转换也是同样。常规压力在润滑光碟表面的时候不仅受到非牛顿学流体材料的变量的影响,同样也受到常规速度的影响。在稳定的薄片流层下,压力和负载能力在第一常规压力差分的作用下均有所增长,但是增长的作用不是很明显,由于较小的常规速度。考虑到不仅来自于理论分析,并且来自于真实的润滑计算,第一常规压力差分的润滑作用在不同的重要因素的影响下是可以被人们忽视的。当光滑面运动而常规润滑速度增长了之后,涉及常规速度的作用的瑞诺德公式再次被修正。数学成果显示出了第一常规压力差分的增大作用经及在润滑计算的过程中需要被考虑。附录2 英文原文Normal Stress Effects in Slider-Disk Inte
15、rface Lubrication with Non-Newtonian Fluid Chen Haosheng1*, Li Jiang2, Chen Darong1, Wang Jiadao11. State Key Laboratory of Tribology, Tsinghua University, Beijing China 100084. 2. Department of mechanology, University of Science and Technology Beijing, China, 100083 Abstract To analyze normal stres
16、s effects of non-Newtonian fluid in lubrication of the magnetic head-disk interface, a modified Reynolds equation including the effects of normal stress is established. The expression of the first normal stress difference in the equation is derived from the Rivlin-Ericksen second order flow equation and the f