邻氨基苯甲酸的合成

上传人:hs****ma 文档编号:470442748 上传时间:2022-08-16 格式:DOC 页数:17 大小:1.22MB
返回 下载 相关 举报
邻氨基苯甲酸的合成_第1页
第1页 / 共17页
邻氨基苯甲酸的合成_第2页
第2页 / 共17页
邻氨基苯甲酸的合成_第3页
第3页 / 共17页
邻氨基苯甲酸的合成_第4页
第4页 / 共17页
邻氨基苯甲酸的合成_第5页
第5页 / 共17页
点击查看更多>>
资源描述

《邻氨基苯甲酸的合成》由会员分享,可在线阅读,更多相关《邻氨基苯甲酸的合成(17页珍藏版)》请在金锄头文库上搜索。

1、化工中间体邻氨基苯甲酸的合成(胺化反应)邻氨基苯甲酸的合成工作任务1. 邻氨基苯甲酸概述邻氨基苯甲酸是合成染料、医药、农药、香料的中间体。在合成染料方面,用于制造偶氮染料、蒽醌染料、靛族染料。例如分散黄GC、分散黄5G、分散橙GG、活性棕K-B3Y、中性蓝BNL。在医药方面,用于合成抗心律失常药常咯啉、维生素L,非甾体类抗炎镇痛药甲灭酸、炎痛静,非巴比妥类催眠药安眠酮,强安定药泰尔登。邻氨基苯甲酸作为化学试剂,可用作测定镉、钴、汞、镁、镍、铅、锌和铈等的络合试剂,与1-萘胺共用可测定亚硝酸盐。该品还用于其他有机合成。以邻氨基苯甲酸为原料,经成盐、重氮化、还原、环合,可得到3-羟基吲唑(3-Hy

2、droxyindazole)。3.2合成邻氨基苯甲酸的工作任务分析3.2.1邻氨基苯甲酸分子结构的分析邻氨基苯甲酸的分子式:H2NC6H4COOH邻氨基苯甲酸的分子结构式:不难看出,目标化合物基本结构为苯环,在苯环上接有氨基和羧基。从基团(官能团)的位置看,氨基和羧基处于邻位。3.2.2 邻氨基苯甲酸合成路线分析从邻氨基苯甲酸的结构可以看出,合成邻氨基苯甲酸要在苯环相邻的两个碳原子上引入氨基和羧基,或者在含有氨基和羧基之一的苯衍生物苯环上再引入另一个基团。氨基直接引入苯环因转化率低无实际应用意义,苯环上氨基的引入可采用硝基还原,也可间接引入氨基,即氨基置换苯环上已有的取代基。对于邻氨基苯甲酸而

3、言,逆向推导如下:分析1:FGIFGI 相应合成路线1:由邻硝基甲苯氧化得邻硝基苯甲酸,邻硝基苯甲酸还原得到邻氨基苯甲酸。 氧化 还原 分析2:FGIFGI 相应合成路线2:邻苯二甲酰亚胺用烧碱和次氯酸钠溶液处理而制得:分析3:FGIFGI 相应的合成路线3:由苯酐与氨进行酰胺化反应,生成邻甲酰氨基苯甲酸钠,经次氯酸钠降解反应,生成邻氨基苯甲酸钠,最后中和而得。实际上,第三种路线与第二种路线非常相近,只不过第三种路线的起始出发物邻苯二甲酸酐更为常用。因此要想从这些合成路线中确定最理想的一条路线,并成为工业生产上可用的工艺路线,则需要综合而科学地考察设计出的每一条路线的利弊,择优选用。3.2.3

4、 文献中常见的邻氨基苯甲酸合成方法从文献资料上可以查出,目前邻氨基苯甲酸的生产方法主要有下面的方法。1邻硝基苯甲酸还原该法以邻硝基苯甲酸为原料,经还原而得。如果邻硝基苯甲酸原料的来源与价格合适,此法制备最为简单。但制备邻硝基苯甲酸,如用苯甲酸硝化,则羧基使硝化反应困难;如用甲苯或乙苯硝化,产物主要为邻位和对位的混合物,对位产物的比例较高,所以这种方法生产对硝基苯甲酸中更为常用。2邻苯二甲酰亚胺用烧碱和次氯酸钠溶液处理而制得。 3由苯酐、氨及氢氧化钠在低温下进行酰胺化反应,生成邻氨甲酰苯甲酸钠,经次氯酸钠降解(脱羰基)反应,生成邻氨基苯甲酸钠,最后中和而得。由于所用原料成本较低,反应产率高,此方

5、法是工业生产上主要的生产方法。这里建议同学们选用该法(路线3)合成邻氨基苯甲酸。下面我们将由此合成路线出发,将合成过程中需要考虑的各种因素进行剖析,找出一条相对合适的合成方案,并按此方案进行合成来实际检验方案的可行性。假如采用其他的合成路线,请同学们沿此思路自己剖析,应该不难找出合适的合成的方案。3.2.4 邻氨基苯甲酸合成过程单元反应及其控制分析对于第三条合成路线(即以苯酐为合成起始物的路线),胺化和次氯酸钠降解(实际上也是胺化的一类)是合成邻氨基苯甲酸过程实施的关键反应。欲在合成中做好胺化反应,就必须对胺化反应过程的情况作详细了解。3.2.4.1苯酐的胺化及其控制分析1苯酐胺化反应(1)胺

6、化反应胺化也称氨解或氨基化,是指含有不同活性官能团的有机物与胺化剂作用,生成胺类的化学过程。例如苯系芳烃胺化可制备苯胺。反应通式如下: R-Y NH3 R-NH2 HY其中胺解指的是氨与有机化合物发生复分解而生成伯胺的反应,氨与双键加成反应只能叫胺化而不能叫氨解。胺化按被置换基团的不同,可分为卤化物的胺化,羟基化合物的胺化,羰基化合物的胺化,磺酸基化合物的胺化和硝基化合物的胺化。(2)胺化试剂胺化反应常用液氨、氨水、气态胺或其他含氨基化合物作胺化剂。液氨氨在常温、常压下是气体。将氨在加压下冷却,使氨液化即可装入钢瓶,以便贮存、运输。钢顶上装打两个阀门,一个阀门在液面上,用来引出气态氨:另一个阀

7、门用管子插入液氨中,用于引出液氨。液氨的临界温度是132.9,这是氨能保持液态的最高温度。但是,液氨在高压下可溶解于许多液态有机化合物中。因此,如果有机化合物在反应温度下是液态的,或者氨解反应要求在无水有机溶剂中进行,则需要使用液氨作氨解剂。这时即使氨解温度超过132.9,氨仍能保持液态。另外,有机反应物在过量的液氨中也有一定的溶解度。液氨主要用于需要避免水解副反应的氨解过程。例如:2-氰基-4-硝基氯苯氨解制2-氰基-4-硝基苯胺时,为了避免氰基的水解,要用液氨在氯苯溶剂中进行氨解。 用液氨进行氨解的缺点是:操作压力高,过量的液氨较难再以液态氨的形式回收。氨水氨在常压和20时在水中的溶解度为

8、34.1(重量)、在30时为29,在40为25.3%。为了减少和避免氨水在贮存运输中的挥发损失,工业氨水的浓度般为25%。在压力下,氨在水中的溶解度增加,因此,使用氨水的胺解反应可在高温、高压下进行。这时甚至可以向25氨水中通入一部分液氨或氨气以提高氨水的浓度。对于液相氨化过程,氨水是使用最广泛的氨化剂,它的优点是操作方面,过量的氨可用水吸收,回收的氨水可循环套用,适用面广。另外,氨水还能溶解芳磺酸盐以及氯蒽醌氨解时所用的催化剂(铜盐或亚铜盐)和还原抑制剂(氯酸钠、间硝基苯磺酸钠。氨水的缺点是对某些芳香族被氨化物溶解度小,水的存在有时会引起水解副反应。用氨水进行的氨解过程,应该解释为是由NH3

9、引起的,而不是由NH4OH引起的。因为水是很弱的“酸”,它和NH3的氢键缔合作用很不稳定,而氢氧化铵是弱碱,它在氨水中的存在量极少。由于OH的存在,在某些氨解反应中会同时发生水解副反应。(3)其他氨化剂 其他氨化剂主要有气氨、含氨基化合物等。气态氨用于气固相接触催化氨解和胺化。含氨基的化合物如尿素、碳酸氢铵、羟氨和芳胺等,只用于个别氨解和胺化反应。 经过比较,本情境中可以选氨水作氨化剂。2苯酐的胺化反应机理酸酐的氨解是酰基上的亲核取代反应,其历程遵循酰基亲核反应共同的加成-消除的反应机制。首先是酸酐的碳酰基中带部分正电荷的碳原子向伯胺氨基氮原子上的末共用电子对作亲电进攻,形成过渡络合物,然后酸

10、酐键断裂,而形成羧酰胺和羧酸。碳酰基是吸电子基,它使酰胺分子中氨基氮原子上的电子云密度降低,不容易再与亲电的酰化剂质点相作用,即不容易生成N,N-二酰化物。所以,在一般情况下容易制得较纯的酰胺,这和N-烷基化反应是不一样的。 反应中无水生成,反应不可逆,因而反应收率较高。由于苯酐氨解时产生一分子羧酸,能与氨进一步结合形成铵盐。但由于该羧酸的的酸性较弱(参考情境2中苯甲酸的酸性),形成的铵盐很容易解离。工业生产中,苯酐胺化是常用氨水与NaOH一起胺化,此时产物邻氨甲酰苯甲酸钠,反应式如下。主要副反应主要是苯酐的水解。由于氨是强亲核性试剂,氨解的速度远大于水解的速度。3苯酐胺化的影响因素苯酐的胺化

11、反应主要受反应物(苯酐、胺化剂)、传质、温度等因素的影响。 (1)苯酐的反应性质邻苯二甲酸酐俗称苯酐,英文简写为PA。它是白色鳞片状固体及粉末,或白色针状晶体,比重1.527(4),熔点130.8,沸点284.5,易升华,稍溶于冷水,易溶于热水并水解为邻苯二甲酸,溶于乙醇、苯和吡啶,微溶于乙醚。酸酐的分子结构可以看作羰基和酯基相连,由于酯基的吸电子性,酸酐的羰基碳正电性有所增加,有利于亲电反应的进行,故苯酐在氨解中反应活性较高。由于羰基双键能与苯环电子云形成共轭,使羰基碳上电性部分转移苯环上,故苯酐的活性较乙酐为低。(2)氨水的性质氨水为无色透明液体,有强烈的刺激性气味。受热或见光易分解,极易

12、挥发出氨气。浓氨水对呼吸道和皮肤有刺激作用,并能损伤中枢神经系统。具有弱碱性。用氨水进行的氨解过程,应该解释为是由NH3引起的,而不是由NH4OH引起的。因为水是很弱的“酸”,它和NH3的氢键缔合作用很不稳定,而氢氧化铵是弱碱,它在氨水中的存在量极少。工业氨解时常用25%的工业氨水,而实际生产中还应根据氨解的难易以及设备的耐压能力确定氨水的浓度。(3)胺比从反应计量系数看,氨的用量与苯酐的摩尔比约为1:1,产物分子中形成一个酰胺基和一个羧基。但通常胺化反应时氨水过量,这样可以使底物(苯酐)转化更完全。在氨水过量的条件下,多余的氨会和羧基反应形成铵盐,此时氨水的用量应加倍;同时,为了保证体系中有

13、足够浓度的氨,即胺比应在2:1以上。但如果在胺化的同时加入NaOH,使得铵盐中的氨释放出来,重新参与到胺化反应中,则胺比可以控制在12:1。(4)温度一般而言,升高温度可以增加有机物在氨水中的溶解度和加快反应速率,对缩短反应时间有利,但温度过高,也会增加副反应的发生,甚至出现焦化现象,同时压力也将升高。氨解反应是一个放热反应,反应速率过快,将使反应热的移除困难,因此对每一个氨解反应都规定有最高允许温度。苯酐的氨解比较容易,反应放热,并且氨水易挥发,故要控制反应平稳地进行,反应温度不宜过高。(5)传质的影响搅拌效应对反应速率的影响有三种情况:两者呈线性关系;无搅拌时反应速率很慢,有搅拌时初期反应

14、速率增加很快,达到一定转速后两者呈线性关系;反应速率与搅拌速率无关。由于苯酐常温下是固体,而氨水是液体,搅拌有利于苯酐的溶解,也有利于反应热的传递。(6)主要副反应主要是苯酐的水解。由于氨是强亲核性试剂,氨解的速度远大于水解的速度。如果反应时体系内氨始终过量的话,可将水解副反应降到很低的程度。5. 苯酐胺化反应的监控(1)反应体系构建要点反应温度需控制平稳,宜采用水浴控制反应温度;由于氨水易挥发,反应体系需配有回流装置,回流装置出口可以考虑接尾气吸收装置。反应体系要能中间加料,宜采用多口反应瓶。(2)反应控制策略为了防止氨水中水带来的水解副反应,在加料方式上应将苯酐加入到氨水中,使得反应时氨始

15、终处于过量状态。同时,也能使得反应热易于散发,反应比较平稳。但必须注意,如果胺比控制在1:1左右时,由于苯酐氨解时同时形成铵盐,从而使得体系中游离的氨分子的浓度迅速降低,当苯酐加入一半时可能会使体系中游离氨的浓度降到接近于0,如果继续加入苯酐,将不会发生氨解反应,而发生水解反应。此时必须加入等摩尔的NaOH将铵盐中的氨游离出来,再加入苯酐反应。由于加入NaOH中和铵盐会产生水,故当加入第二批苯酐时体系中氨水实际的浓度会下降,影响氨解反应速率,此时可稍加热,一方面能促进苯酐的溶解,另一方面能加快胺化速度。同样道理,当第二批苯酐加入到一半时,必须加入相应等摩尔的NaOH中和铵盐,使氨游离出来。依此类推,直至苯酐全部加完。如果控制氨水过量20,则第三次加入苯酐后可不必加入NaOH。(3)氨解反应终点的控制氨解反应较快,当原料苯酐溶解完全后氨解反应基本就能完成。可以测定体系的pH值,当pH值不再下降时,反应即到终点。也可以用TLC法对反应进行跟

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号