四轴加工

上传人:桔**** 文档编号:469190832 上传时间:2022-08-18 格式:DOC 页数:57 大小:2.34MB
返回 下载 相关 举报
四轴加工_第1页
第1页 / 共57页
四轴加工_第2页
第2页 / 共57页
四轴加工_第3页
第3页 / 共57页
四轴加工_第4页
第4页 / 共57页
四轴加工_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《四轴加工》由会员分享,可在线阅读,更多相关《四轴加工(57页珍藏版)》请在金锄头文库上搜索。

1、MasterCAM在四轴、五轴加工中的应用技巧一、四轴加工的应用卫生巾切刀成型辊的数控加工主要是通过用平铣刀和锥度成型刀在XK-715M机床(带旋转轴的三坐标数控机床)上实现的。旋转轴上夹持的切刀成型辊相当于第四轴A轴,刀具在圆柱体上走空间曲线,就得到刀刃的型面。 那么,如何建出这条卷在圆柱体上的空间曲线呢? 首先,在MasterCAM8.0中,根据切刀理论刃口展开图画出不同刀具的中心轨迹展开图,这是二维曲线。 然后,利用主菜单的转换卷筒串连,用串连的方式选取刀具轨迹曲线然后设定卷筒直径、旋转轴X及曲线放置在圆柱体上的位置确认后再作出与卷筒直径同样大小的圆柱曲面,作为4轴曲线加工的导动曲面,将

2、空间曲线以投影方式投到圆柱面上进行加工。 虽然同样是FANUC系统,但XK-715M机床和加工中心控制器的所使用的格式稍有区别,所以在用MasterCAM后处理产生NC程序之前需修改后置处理文件MPFAN.PST。 方法如下:进入文件编辑*.PST找到系统默认的MPFAN.PST文件,先作备份,如另存为MPFAN-1.PST文件,然后打开,找到下面清单中的变量rot_ccw_pos : 1,将其改为rot_ccw_pos : 0,并存盘。# Rotary Axis Settings# -vmc : 1 #0 = Horizontal Machine, 1 = Vertical Millrot_

3、on_x: 1 #Default Rotary Axis Orientation, See ques. 164. #0 = Off, 1 = About X, 2 = About Y, 3 = About Zrot_ccw_pos : 1 #Axis signed dir, 0 = CW positive, 1 = CCW positive之后,进入“NC管理”菜单更改后置处理文件选中MPFAN-1.PST文件,再对NCI文件进行后置处理,产生符合XK-715M机床的NC格式。 二、 五轴加工的应用 以在FIDIA系统的T20上加工双角度叉耳内外形为例,说明用MasterCAM8.0实现T20

4、上带固定角度的五轴加工。 T20的A、B角的是这样定义的:A角绕X轴旋转,B角绕Y轴旋转,B角是主动角,A角附加在B角上。T20的工作台不旋转,刀头可以作A、B角旋转。在MasterCAM建模时,首先要确定零件实际装夹位置(不超过A、B角定义的范围),构图面选择要与零件实际装夹面一致。 加工叉耳内外形时,实际上是T20的刀头旋转固定双角度A、B角,然后走类似三轴的刀具路径,但这种路径相对装夹面来说却是三维空间线。 分析最终产生的T20固定角度五轴加工NC程序,首先要加入刀头的A、B角信息,然后再走出三维空间线。 1在MasterCAM 8.0中获得A、B角信息 按照上述装夹方式建出叉耳型面后,

5、先作出待挖槽曲面的法失,然后在Front构图面(前视图)分析该法矢的信息,其中的角度信息就是我们要求的B角值;再在3D构图面状态,求出该法矢与Y轴的夹角,就得到A角的值。 2在MasterCAM 8.0中得到实际可用的刀具路径和NC程序 先把待挖槽曲面定义成新的构图面,如Number 13,存储后将刀具平面也选为13,然后象作三轴加工一样作出刀具路径。所得到的刀具路径不能直接进行后置处理,因为它带双角度,不能或不一定能后置处理成适合T20 FIDIA控制器的程序格式。所以只有把该刀具路径经模拟后存成几何图素,然后在Top构图面和Top刀具面的状态下,选择该几何图素,作“Contour”加工。加

6、工参数“计算机补偿”和“控制器补偿”均选“OFF”,“刀尖补偿”选择与上次刀具路径一致。如此得到的新刀具路径就相当于帮系统把双角度刀具路径转化成原始构图面(T面)中的刀具路径,将其进行通用后置处理后就得到T20刀头旋转固定A、B角后应走的NC程序。MasterCAM V9在4轴和5轴加工中的应用一、开发FIDIA T205轴后置处理程序 笔者利用MasterCAM V9提供的一个通用5轴后处理程序模板,即MPGEN5X_FANUC.PST,首先在充分了解模板的结构和内容的基础上,修改该程序模板的某些设置,即可得到适应FIDIA T20系统的5轴后置处理程序。 1. FIDIA T20的配置 主

7、轴头双摆动,B为主动旋转轴,A为从动旋转轴,B轴在XZ平面内摆动,A轴在YZ平面内摆动,B轴的范围是360,A轴的范围104 2. 修改MPGEN5X_FANUC.PST文件 针对FIDIA T20的配置修改MPGEN5X_FANUC.PST文件,如图1所示。图1 二、5轴钻孔的应用 我们在实际加工中,往往需要钻曲面上的5轴法向孔或者石油钻头上的5轴切削齿孔,这些孔均要在T20上进行。以前的做法是在MasterCAM中先作出这些5轴孔的轴线,然后一根一根分析计算出每根线的B、A角度,最后手工在NC文件中输入B、A角度值。这种方法效率不高,而且容易出错。借助MasterCAM V9中Drill5

8、ax的5轴钻孔功能,得到5轴钻孔刀具路径,然后用修改后的5轴后置处理程序进行POST,即可自动获得钻法线孔的NC文件。这样不仅提高了编程效率,同时又减少了出错机率。以图2钻曲面法向孔为例,说明MasterCAM V9中Drill5ax5轴钻孔功能的应用。图2 (1)先按曲面上的点作出曲面法向孔轴线; (2)生成法向孔加工刀具路径:选择ToolpathsMultiaxisDrill5ax,出现图3所示对话框,点击“Points/Lines”选项,用Endpoints方式选择每个法向孔轴线的下端点,相当于控制了刀具轴线的方向; (3)选完要加工的点后,出现5轴钻孔对话框,参数设置如图4所示; (4

9、)用修改后的MPGEN5X_FANUC.PST后置处理程序后处理(Post)后得到的NC文件如图5所示。图3图4 图5 三、5轴加工拔模角面的应用 比如,实际中要在如图6所示的模具上加工扭转槽F,其底部带R3倒圆,槽的两个侧壁是空间扭转直纹面。加工方法是先在三轴上粗铣该槽,留精加工余量,然后在5轴铣床上用5轴联动方式精加工槽各面到位。考虑到槽宽及底部的R3倒圆,选用8(R3)铣刀加工。图6 (1)选择ToolpathsMultiaxisSwarf5ax,出现图7所示对话框,点击“Chains”选项,按图8先选H再选G来确定刀具轴线的控制方向,然后点击“Surfaces”按钮,选择A、B、C、D

10、面作为控制刀尖的曲面; (2)填写完成图7对话框后,进入Swarf5ax加工对话框图9,选择刀具; (3)点击图9中的“Multiaxis parameters”进入图10参数设置对话框,按图设置,注意刀具偏置的方向,它与你之前选择的Chains的方向有关; (4)得到的刀具路径仿真(Verify)后如图11所示; (5)用修改后的MPGEN5X_FANUC.PST后置处理程序Post后得到的NC文件如图12所示。图7图8图9图10图11图12四、4轴加工的应用 在实际中往往要在某旋转体上加工沟槽形状,利用MasterCAM V9自带的回转功能,通过Contour中置换X或Y轴的功能,可以简单

11、地将三轴问题转换成4轴刀具路径。 假设有如图13所示的某轨迹CAD二维展开图,我们进行如下的步骤: (1)生成刀具路径:选择ToolpathsContourChain,选择图13所示的图素,串连方向如该图所示;图13 (2)之后进入图14所示的对话框,注意将Ratory Axis选中,进入图15所示的对话框,设置置换Y轴的参数,Ratory diameter设置成展开图的理论直径,置换轴的依据是想要刀具轴线与什么轴平行,就置换那个轴;图14图15 (3)置换Y轴的参数设置好后,进入图16所示的Contour parameters对话框,注意设置刀具的加工深度,把它设置成相对Ratory dia

12、meter理论旋转直径的数值;图16 (4)产生的刀具路径轨迹如图17所示,仿真(Verify)后如图18所示;图17图18 (5)用MasterCAM V9自带的Mpfan.pst后置处理后的NC程序如图19所示。图19五、结束语 MasterCAM V9中关于4轴、5轴加工方面的内容还很丰富,值得去深入研究的东西还有很多,而且还应该在实践中不断积累经验,使编制的程序更加优化,不断提高编程效率、加工效率和加工质量。MasterCAM在叶片零件四联动数控加工应用一、引言 数控加工是一种可编程的柔性加工方法。数控机床正向着高速、高精、高柔性、复合化的方向发展,其费用相对较高,故适用于精度高,形状

13、复杂的零件的加工,而叶片零件公差带小,其型面多为复杂的空间曲面,需要制造专用的工装夹具,成批量生产要求精确复制,一直是数控加工的应用对象。二、 四联动NC机床 四轴联动加工技术主要应用于加工具有较为复杂曲面的工件,与三轴联动加工相比,四轴联动加工可以加工出更高质量、更复杂的曲面,主要适用于飞机、模具、汽车等行业的特殊加工,目前已经普及国产四坐标机床。如下左图所示四坐标立式NC机床是在三个线性平动轴的基础上增加一旋转轴。其运动链为:三、叶片的结构特点 从叶片的结构来看,其叶身型面部分为复杂的空间曲面,各部分的曲率、扭转变化较大,是典型的薄壁件。由于其为动力等装置的重要部件,工作条件较为恶劣,对零

14、件本身的精度和质量提出的很高的要求。型面的加工质量直接影响其工作性能,从而可能影响整机的性能。叶片的材料要求有很高的质量强度比,加工中难切削,切削抗力大,引起的变形也大。由于其截面形状,在叶盆和叶背方向上抵抗变形的能力也不同,进排边缘处又较薄,加工中的形变很复杂。对数控加工提出了很高的要求。在实际加工中,多采用以下的加工流程:四、叶片的CAD建模 Mastercam是美国CNC Software公司开发的一套CAD/CAM 软件,最早的版本为V3.0,可用于DOS。由于其诞生较早,兼具CAD软件和CAM软件的重要功能,发展至今无疑是CAD/CAM软件中的一枝奇葩,有很高的市场占有率。软件的CAD功能可以绘制2D和3D图形,构建自由曲面的功能更是远远胜于同类的CAD软件;软件的CAM功能方便直观,可以直接在点、线、曲面、实体上产生刀轨,其后置处理文件是一种用户回答式的自由修改文件,默认的后置处理文件Mpfan.pst与FANUC控制系统的NC机床无缝集成。 1、构建截面线 按设计给定数据绘制出各个平面上的截面线,叶盆和叶背上的型线均为自由曲线,进排气边缘为一段圆弧,将各曲线光滑过渡,并保证各段曲线的连续。根据给定的扭转角将各个平面上的曲线通过XformRotate命令进行旋转,得到一组空间曲线,如下图所示。 2、构建曲面 将所得到的截面线通过Create(创建)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 营销创新

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号