第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介

上传人:大米 文档编号:460761182 上传时间:2023-06-24 格式:DOC 页数:10 大小:438.50KB
返回 下载 相关 举报
第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介_第1页
第1页 / 共10页
第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介_第2页
第2页 / 共10页
第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介_第3页
第3页 / 共10页
第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介_第4页
第4页 / 共10页
第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介_第5页
第5页 / 共10页
点击查看更多>>
资源描述

《第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介》由会员分享,可在线阅读,更多相关《第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介(10页珍藏版)》请在金锄头文库上搜索。

1、第三代测序技术(单分子实时DNA测序)与第二代测序技术(高通量测序技术)简介第三代测序技术简介 如果有人告诉你用显微镜实时观测单分子DNA聚合酶复制DNA,并用它来测序,你一定会认为他异想天开,没有一点生物的sense。我最初就是这样认为的,然而它不仅可以实现,而且已经实现了!这个就是被称为第三代的测序技术,Pacific Biosciences公司推出的“Single Molecule Real Time (SMRT) DNA Sequencing”(单分子实时DNA测序)。我有幸在NIH听到了这个技术发明人Stephen Turner博士的讲座,根据自己粗浅的理解记录整理一下。要实现单分子

2、实时测序,有三个关键的技术。第一个是荧光标记的脱氧核苷酸。显微镜现在再厉害,也不可能真的实时看到“单分子”。但是它可以实时记录荧光的强度变化。当荧光标记的脱氧核苷酸被掺入DNA链的时候,它的荧光就同时能在DNA链上探测到。当它与DNA链形成化学键的时候,它的荧光基团就被DNA聚合酶切除,荧光消失。这种荧光标记的脱氧核苷酸不会影响DNA聚合酶的活性,并且在荧光被切除之后,合成的DNA链和天然的DNA链完全一样。第二个是纳米微孔。因为在显微镜实时记录DNA链上的荧光的时候,DNA链周围的众多的荧光标记的脱氧核苷酸形成了非常强大的荧光背景。这种强大的荧光背景使单分子的荧光探测成为不可能。Pacifi

3、c Biosciences公司发明了一种直径只有几十纳米的纳米孔zero-mode waveguides (ZMWs),单分子的DNA聚合酶被固定在这个孔内。在这么小的孔内,DNA链周围的荧光标记的脱氧核苷酸有限,而且由于A,T,C,G这四种荧光标记的脱氧核苷酸非常快速地从外面进入到孔内又出去,它们形成了非常稳定的背景荧光信号。而当某一种荧光标记的脱氧核苷酸被掺入到DNA链时,这种特定颜色的荧光会持续一小段时间,直到新的化学键形成,荧光基团被DNA聚合酶切除为止(见图)。第三个是共聚焦显微镜实时地快速地对集成在板上的无数的纳米小孔同时进行记录。由于我对显微原理的物理知识匮乏,而Pacific

4、Biosciences公司又没有非常强调在这方面的发明,不做进一步探讨。他们还对这一技术进行进一步的优化。第一个是把双链DNA环化反复测序。人们可以在双链DNA的两头连上发夹结构的DNA adaptor,从而使DNA环化。而DNA聚合酶就能够以环化的DNA作为模板滚环复制,反复测一段DNA序列。这种反复测序,纠正了偶尔出现的复制错误,从而使测序精度非常高。第二个是激发光中断测序法。DNA聚合酶虽然很稳定,但是在强大的激发光作用下酶也是有一定寿命的。如果把激发光中断一段时间,在这段时间内DNA聚合酶继续复制DNA,当激发光重新开启以后,人们就可以测到长DNA链后面的序列。第三代测序技术非常可怕。

5、1、它实现了DNA聚合酶内在自身的反应速度,一秒可以测10个碱基,测序速度是化学法测序的2万倍。2、它实现了DNA聚合酶内在自身的processivity(延续性,也就是DNA聚合酶一次可以合成很长的片段),一个反应就可以测非常长的序列。 二代测序现在可以测到上百个碱基,但是三代测序现在就可以测几千个碱基。这为基因组的重复序列的拼接提供了非常好的条件。3、它的精度非常高,达到99.9999%。此外,它还有两个应用是二代测序所不具备的。第一个是直接测RNA的序列。既然DNA聚合酶能够实时观测,那么以RNA为模板复制DNA的逆转录酶也同样可以。RNA的直接测序,将大大降低体外逆转录产生的系统误差。

6、第二个是直接测甲基化的DNA序列。实际上DNA聚合酶复制A、T、C、G的速度是不一样的。正常的C或者甲基化的C为模板,DNA聚合酶停顿的时间不同。根据这个不同的时间,可以判断模板的C是否甲基化。Pacific Biosciences公司预计2010年或者2011年就会推出商业化的测序仪器。在不远的将来,如果他们能和二代测序一样集成100万个纳米微孔,那么一台仪器15分钟就能够准确地测出一个人的基因组。以后每个人的基因组测序成本将变成100美元,人人都可以消费得起。想想人类基因组计划耗资30亿美元,费时十几年,无数科学家参与其中,技术的革新意义是多么重大啊!高通量测序技术第二代测序技术 高通量测

7、序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。自从2005年454LifeSciences公司(2007年该公司被Roche正式收购)推出了454FLX焦磷酸测序平台(454FLXpyrosequencingplatform)以来,曾推出过3730xlDNA测序仪(3730xlDNAAnalyzer)的Applied Bi

8、oSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,因为他们的拳头产品毛细管阵列电泳测序仪系列(seriescapillaryarrayelectrophoresissequencingmachines)遇到了两个强有力的竞争对手,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer),另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(GenomeAnalyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序

9、平台即为目前高通量测序平台的代表。(见表一)公司名称技术原理技术开发者商业模式Apply Biosystems(ABI)基于磁珠的大规模并行克隆连接DNA测序法美国Agencourt私人基因组学公司(APG)上市公司:销售设备和试剂获取利润Illumina合成测序法英国Solexa公司首席科学家David Bentley上市公司:销售设备和试剂获取利润Roche大规模并行焦磷酸合成测序法美国454 Life Sciences公司的创始人Jonathan Rothberg上市公司:销售设备和试剂获取利润Helicos大规模并行单分子合成测序法美国斯坦福大学生物工程学家Stephen Quake上

10、市公司:2007年5月首次公开募股(IPO)Complete GenomicsDNA纳米阵列与组合探针锚定连接测序法美国Complete Genomics公司首席科学家radoje drmanac私人公司:投资额为4650万美元表一:主流测序平台一览这些平台共同的特点是极高的测序通量,相对于传统测序的96道毛细管测序,高通量测序一次实验可以读取40万到400万条序列。读取长度根据平台不同从25bp到450bp,不同的测序平台在一次实验中,可以读取1G到14G不等的碱基数,这样庞大的测序能力是传统测序仪所不能比拟的。尽管如此,在这项新的划时代的测序技术刚出现的时候,科学界对这项新技术却并不热衷。

11、许多习惯用桑格技术的科学家怀疑新技术的准确度、阅读能力、成本消费、实用性。代理Sanger型测序硬件的经销商害怕其投资失败而首先提出了这些怀疑。图一:在芯片上进行的测序:Illumina测序平台然而大多数人却忽略了一个事实,即桑格技术的普及最初也遇到同样的阻碍。桑格技术刚开发出来时,阅读能力很难超过25bp,即使在Fred Sanger双脱氧终止法发明后也只达到80bp,如今却达到了750bp;而新发展的合成测序技术,应用焦磷酸测序方法,其阅读能力最初只有100bp,推向市场16个月后增加至250bp,随着技术的不断完善,目前已达到了400bp,很快就接近桑格技术目前的水平。除了阅读能力外,能

12、否以有限的成本用一台仪器产生足够数量的序列标记也是另一个需要改善的重要问题。这个问题已经被Roche公司解决了,应用他们的系统,仅花费阅读35bp或者更小片段的成本就能产生比35bp多10倍的序列标记。 图二:GS FLX 高通量测序方法原理示意图 一、高通量测序的应用高通量测序可以帮助研究者跨过文库构建这一实验步骤,避免了亚克隆过程中引入的偏差。 依靠后期强大的生物信息学分析能力,对照一个参比基因组(reference genome)高通量测序技术可以非常轻松完成基因组重测序(re-sequence),2007年van Orsouw等人结合改进的AFLP 技术和454 测序技术对玉米基因组进

13、行了重测序,该重测序实验发现的超过75%的SNP位点能够用SNPWave技术验证,提供了一条对复杂基因组特别是含有高度重复序列的植物基因组进行多态性分析的技术路线。2008年Hillier对线虫CB4858 品系进行Solexa重测序,寻找线虫基因组中的SNP位点和单位点的缺失或扩增。但是也应该看到,由于高通量测序读取长度的限制,使其在对未知基因组进行从头测序(novo sequencing)的应用受到限制,这部分工作仍然需要传统测序(读取长度达到850 碱基)的协助。但是这并不影响高通量测序技术在全基因组mRNA表达谱,microRNA表达谱,ChIP-chip以及DNA甲基化等方面的应用。

14、2008年Mortazavi等人对小鼠的大脑、肝脏和骨骼肌进行了RNA 深度测序,这项工作展示了深度测序在转录组研究上的两大进展,表达计数和序列分析。对测得的每条序列进行计数获得每个特定转录本的表达量,是一种数码化的表达谱检测,能检测到丰度非常低的转录本。分析测得的序列,有大于90%的数据显示落在已知的外显子中,而那些在已知序列之外的信息通过数据分析展示的是从未被报道过的RNA剪切形式,3端非翻译区,变动的启动子区域以及潜在的小RNA 前体,发现至少有3500个基因拥有不止一种剪切形式。而这些信息无论使用芯片技术还是SAGE文库测序都是无法被发现的。高通量测序另一个被广泛应用的领域是小分子RN

15、A或非编码RNA(ncRNA)研究。测序方法能轻易的解决芯片技术在检测小分子时遇到的技术难题(短序列,高度同源), 而且小分子RNA的短序列正好配合了高通量测序的长度,使得数据“不浪费”,同时测序方法还能在实验中发现新的小分子RNA。在衣藻、斑马鱼、果蝇、线虫、人和黑猩猩中都已经成功地找到了新的小分子RNA。在线虫中获得了40 万个序列,通过分析发现了18个新的小RNA分子和一类全新的小分子RNA。在DNA蛋白质相互作用的研究上,染色质免疫沉淀深度测序(ChIP-seq)实验也展示了其非常大的潜力。染色质免疫沉淀以后的DNA 直接进行测序,对比ref seq可以直接获得蛋白与DNA结合的位点信

16、息,相比ChIP-chip,ChIP-seq可以检测更小的结合区段、未知的结合位点、结合位点内的突变情况和蛋白亲合力较低的区段。 图三: Independent Flow Cells(SoLidTM System)二、高通量测序的前景目前,大多分析家都无法相信新一代测序技术能完全取代目前的芯片测序技术。不过,有些分析家也的确认为芯片测序技术正面临着挑战,他们认为到了2012年新一代的测序技术将会带来高达2。15亿美元的产值。2006年,整个芯片测序市场大概价值8亿美元,其中65%的市场份额都是有关基因表达谱分析产品的,剩下35%的市场份额则由基因型分析芯片占据。不过美国哈佛大学(HarvardUnive

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号