数字温度计课程设计报告材料

上传人:s9****2 文档编号:458331753 上传时间:2023-10-05 格式:DOC 页数:20 大小:3.36MB
返回 下载 相关 举报
数字温度计课程设计报告材料_第1页
第1页 / 共20页
数字温度计课程设计报告材料_第2页
第2页 / 共20页
数字温度计课程设计报告材料_第3页
第3页 / 共20页
数字温度计课程设计报告材料_第4页
第4页 / 共20页
数字温度计课程设计报告材料_第5页
第5页 / 共20页
点击查看更多>>
资源描述

《数字温度计课程设计报告材料》由会员分享,可在线阅读,更多相关《数字温度计课程设计报告材料(20页珍藏版)》请在金锄头文库上搜索。

1、word课程设计报告书课程名称:电工电子课程设计题目:数字温度计学 院: 信息工程学院 系:电气工程与其自动化专业班级:电力系统与其自动化113学 号:6100311096学生某某:李超红起讫日期: 6月19日7月2日 指导教师: X朝丹 职称: 讲师 学院审核签名:审核日期:标准文档内容摘要:目前,单片机已经在测控领域中获得了广泛的应用,它除了可以测量电信以外,还可以用于温度、湿度等非电信号的测量,能独立工作的单片机温度检测、温度控制系统已经广泛应用很多领域。单片机是一种特殊的计算机,它是在一块半导体的芯片上集成了CPU,存储器,RAM,ROM,与输入与输出接口电路,这种芯片称为:单片机。由

2、于单片机的集成度高,功能强,通用性好,特别是它具有体积小,重量轻,能耗低,价格廉价,可靠性高,抗干扰能力强和使用方便的优点,使它迅速的得到了推广应用,目前已成为测量控制系统中的优选机种和新电子产品中的关键部件。单片机已不仅仅局限于小系统的概念,现已广泛应用于家用电器,机电产品,办公自动化用品,机器人,儿童玩具,航天器等领域。本次课程设计,就是用单片机实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进展处理。本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。本文介绍了一个

3、基于STC89C52单片机和数字温度传感器DS18B20的测温系统,并用LED数码管显示温度值,易于读数。系统电路简单、操作简便,能任意设定报警温度并可查询最近的10个温度值,系统具有可靠性高、本钱低、功耗小等优点。关键词:单片机 数字温度传感器 数字温度计设计任务与要求此次课程设计,就是用单片实现温度控制,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进展处理。本次采用DS18B20数字温度传感器来实现基于51单片机的数字温度计的设计。 9V供电; 温度采集采用DS18B20; 4位LED显示; 设计温度

4、控制器原理图,并用proteus进展仿真; 用altium designer 画出PCB 并制好印刷电路板; 设计和绘制软件流程图,用C语言进展程序编写;焊接硬件电路,进展调试。设计方案与选材提与到温度的检测,我们首先会考虑传统的测温元件有热电偶和热电阻,而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,需要比拟多的外部硬件支持,硬件电路复杂,软件调试也复杂,制作本钱高。因此,本数字温度计设计采用智能温度传感器DS18B20作为检测元件,测温X围为-55C至+125C。DS18B20可以直接读出被测量的温度值,而采用三线制与单片机相连,减少了外部的硬件电路,具有低本钱和易使用的特点。按照

5、系统设计功能的要求,确定系统由三个模块组成:主控制器STC89C51,温度传感器DS18B20,驱动显示电路。总体电路框图如下:DS18B20温度传感器本设计的测温系统采用芯片DS18B20,DS18B20是DALLAS公司的最新单线数字温度传感器,它的体积更小,适用电压更宽,更经济。实现方法简介DS18B20采用外接电源方式工作,一线测温一线与STC89C51连接,测出的数据放在存放器中,将数据经过BCD码转换后送到LED显示。DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改良型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简

6、单的编程实现位的数字值读数方式。DS18B20的性能特点如下:独特的单线接口仅需要一个端口引脚进展通信;多个DS18B20可以并联在惟一的三线上,实现多点组网功能;无须外部器件;可通过数据线供电,电压X围为3.05.5;零待机功耗;温度以或位数字;用户可定义报警设置;报警搜索命令识别并标志超过程序限定温度温度报警条件的器件;负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作; DS18B20内部结构主要由四局部组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。DS18B20的管脚排列如图2-3-1所示。64位光刻ROM是出厂前被光刻好的,它可以看

7、作是该DS18B20的地址序列号。不同的器件地址序列号不同。C64 位ROM和单线接口高速缓存存储器与控制逻辑温度传感器高温触发器TH低温触发器TL配置存放器8位CRC发生器Vdd图3.3 DS18B20的内部结构图3.4 DS18B20的引脚分布图64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进展通信的原因。温度报警触发器和,可通过软件写入户报警上下限。DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。高速暂存RAM的结构为字节的存储器

8、,结构如图2-3-2所示。头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。第5个字节,为配置存放器,它的内容用于确定温度值的数字转换分辨率。DS18B20工作时存放器中的分辨率转换为相应精度的温度数值。该字节各位的定义如如下图所示。低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和0决定温度转换的精度位数,来设置分辨率。图3.5 DS18B20的字节定义DS18B20高速暂存器共9个存存单元,如表所示:表3-1 DS18B20的引脚分布图序号 存放器名称 作 用

9、 序号 存放器名称 0 温度低字节 以16位补码形式存放 4、5 保存字节1、2 1 温度高字节 6 计数器余值 2 TH/用户字节1 存放温度上限 7 计数器/3 HL/用户字节2 存放温度下限 8 CRC 以12位转化为例说明温度上下字节存放形式与计算:12位转化后得到的12位数据,存储在18B20的两个上下两个8位的RAM中,二进制中的前面5位是符号位。如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625才能得到实际温度。 高8位 S S S S S 262524低8位 232221202

10、-12-22-32-4 表3-2 DS18B20的字节存放表由如下图可以看到,Dsl8820的内部存储器是由8个单元组成,其中第0、1个存放测量温度值,第2、3分别存放报警温度的上下限值,第4单元为配置单元,5、6、7单元在DSl8820这里没有被用到。对于第4个存放器,用户可以设置温度转换精度,系统默认12bit转换精度,相当于十进制的00625,其转换时间大约为750磷。具体见表2-4-1。图3.6 内部存储器结构图表3-3 温度精度配置R1R0转换精度16进制转换精度十进制转换时间009bit0110bit1011bit375ms1112bit750ms由表3-3可见,DS18B20温度

11、转换的时间比拟长,而且分辨率越高,所需要的温度数据转换时间越长。因此,在实际应用中要将分辨率和转换时间权衡考虑。高速暂存RAM的第6、7、8字节保存未用,表现为全逻辑1。第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。LSB形式表示。当符号位S0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。表2-4-2是一局部温度值对应的二进制温度数据。表3-4 温度精度配置温度/二进制表示十六进制表示+1250000 0111 1101 000007D0H+850000 0101 01

12、01 00000550H0000 0001 1001 00000191H0000 0000 1010 000100A2H0000 0000 0000 00100008H00000 0000 0000 10000000H1111 1111 1111 0000FFF8H1111 1111 0101 1110FF5EH1111 1110 0110 1111FE6FH-551111 1100 1001 0000FC90HDS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比拟。假如TTH或TTL,如此将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。因此,可用多

13、只DS18B20同时测量温度并进展报警搜索。在64位ROM的最高有效字节中存储有循环冗余检验码CRC。主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比拟,以判断主机收到的ROM数据是否正确。DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进展计数进而完成温度测量。计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将5

14、5所对应的一个基数分别置入减法计数器1、温度存放器中,计数器1和温度存放器被预置在55所对应的一个基数值。减法计数器1对低温度系数晶振产生的脉冲信号进展减法计数,当减法计数器1的预置值减到0时,温度存放器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进展计数,如此循环直到减法计数器计数到0时,停止温度存放器的累加,此时温度存放器中的数值就是所测温度值。其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度存放器值大致被测温度值。 另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。系统对DS18B20的各种操作按协议进展。操作协议为:初使化DS18B20发复位脉冲发ROM功能命令发存储器操作命令处理数据。由于DS18B20采用的“一线总线结构,所以数据的传输与命令的通讯只要通过微处理器的一根双向Io

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号