《高等代数(北大版第三版)习题答案II》由会员分享,可在线阅读,更多相关《高等代数(北大版第三版)习题答案II(99页珍藏版)》请在金锄头文库上搜索。
1、高等代数(北大第三版)答案目录第一章 多项式 第二章 行列式 第三章 线性方程组第四章 矩阵第五章 二次型 第六章 线性空间第七章 线性变换第八章 矩阵第九章 欧氏空间第十章 双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢! 12设为一个级实对称矩阵,且,证明:必存在实维向量,使请预览后下载!。证 因为,于是,所以,且不是正定矩阵。故必存在非退化线性替换使 ,且在规范形中必含带负号的平方项。于是只要在中,令则可得一线性方程组 ,由于,故可得唯一组非零解使 ,即证存在,使。 13如果都是阶正定矩阵,证明:也是正定矩阵。 证 因为为正定矩阵,所以为正定二次型,且 , ,因此 ,
2、于是必为正定二次型,从而为正定矩阵。 14证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。 证 必要性。采用反证法。若正惯性指数秩,则。即 , 若令请预览后下载! ,则可得非零解使。这与所给条件矛盾,故。充分性。由,知 ,故有,即证二次型半正定。 15证明:是半正定的。 证 ( ) 。可见:1) 当不全相等时 。2) 当时 。故原二次型是半正定的。 16设是一实二次型,若有实维向量使 , 。请预览后下载!证明:必存在实维向量使。 设的秩为,作非退化线性替换将原二次型化为标准型 ,其中为1或-1。由已知,必存在两个向量使 和 ,故标准型中的系数不可能全为1,也不可能全为-1。不妨设有
3、个1,个-1,且,即 ,这时与存在三种可能: , , 下面仅讨论的情形,其他类似可证。 令, , ,则由可求得非零向量使 ,即证。17是一个实矩阵,证明: 。证 由于的充分条件是与为同解方程组,故只要证明与同解即可。事实上 ,即证与同解,故 。 注 该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。一、 补充题参考解答请预览后下载!1 用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。解 1)作非退化线性替换 ,即,则原二次型的标准形为 ,且替换矩阵 ,使 ,请预览后下载!其中 。2)若 , ,则 ,于是当为奇数时,作变换 ,则 ,且当
4、时,得非退化替换矩阵为 ,当时,得非退化替换矩阵为请预览后下载! ,故当为奇数时,都有 。 当为偶数时,作非退化线性替换 ,则 ,于是当时,得非退化替换矩阵为 ,于是当时,得非退化替换矩阵为请预览后下载! ,故当为偶数时,都有 。3) 由配方法可得 ,于是可令 ,则非退化的线性替换为请预览后下载! ,且原二次型的标准形为 ,相应的替换矩阵为 ,又因为 ,所以请预览后下载! 。4) 令 ,则 。由于 ,则 原式 请预览后下载! ,其中所作非退化的线性替换为 ,故非退化的替换矩阵为 。又 请预览后下载! ,所以 。2 设实二次型 ,证明:的秩等于矩阵 的秩。 证 设,因 ,下面只需证明即可。由于,
5、故存在非退化矩阵使 或 ,从而 ,令请预览后下载! ,则 。由于是正定的,因此它的级顺序主子式,从而的秩为。即证。3 设 。其中是的一次齐次式,证明:的正惯性指数,负惯性指数。 证 设 ,的正惯性指数为,秩为,则存在非退化线性替换 ,使得 。下面证明。采用反证法。设,考虑线性方程组 ,该方程组含个方程,小于未知量的个数,故它必有非零解,于是 ,请预览后下载!上式要成立,必有 , ,这就是说,对于这组非零数,有 , ,这与线性替换的系数矩阵非退化的条件矛盾。所以 。 同理可证负惯性指数,即证。4 设 是一对称矩阵,且,证明:存在使,其中表示一个级数与相同的矩阵。 证 只要令,则 ,注意到 , ,
6、则有 。即证。5 设是反对称矩阵,证明:合同于矩阵请预览后下载! 。 证 采用归纳法。当时,合同于,结论成立。下面设为非零反对称矩阵。 当时 ,故与合同,结论成立。 假设时结论成立,今考察的情形。这时 ,如果最后一行(列)元素全为零,则由归纳假设,结论已证。若不然,经过行列的同时对换,不妨设,并将最后一行和最后一列都乘以,则可化成 ,再将最后两行两列的其他非零元化成零,则有 ,由归纳假设知请预览后下载! 与 合同,从而合同于矩阵 ,再对上面矩阵作行交换和列交换,便知结论对级矩阵也成立,即证。6 设是阶实对称矩阵,证明:存在一正实数,使对任一个实维向量都有 。证 因为 ,令,则 。利用可得 ,其
7、中,即证。 7主对角线上全是1的上三角矩阵称为特殊上三角矩阵。1)设是一对称矩阵,为特殊上三角矩阵,而,证明:与的对应顺序主子式有相同的值;2)证明:如果对称矩阵的顺序主子式全不为零,那么一定有一特殊上三角矩阵使成对角形;3)利用以上结果证明:如果矩阵的顺序主子式全大于零,则是正定二次型。证 1)采用归纳法。当时,设请预览后下载! , ,则 。考虑的两个顺序主子式:的一阶顺序主子式为,而二阶顺序主子式为 ,与的各阶顺序主子式相同,故此时结论成立。归纳假设结论对阶矩阵成立,今考察阶矩阵,将写成分块矩阵 , ,其中为特殊上三角矩阵。于是 。由归纳假设,的一切阶的顺序主子式,即的顺序主子式与的顺序主
8、子式有相同的值,而的阶顺序主子式就是,由 ,知的阶顺序主子式也与的阶顺序主子式相等,即证。 2)设阶对称矩阵,因,同时对的第一行和第一列进行相同的第三种初等变换,可以化成对称矩阵 ,请预览后下载!于是由1)知,从而,再对进行类似的初等变换,使矩阵的第二行和第二列中除外其余都化成零;如此继续下去,经过若干次行列同时进行的第三种初等变换,便可以将化成对角形 。由于每进行一次行、列的第三种初等变换,相当于右乘一个上三角形阵,左乘一个下三角形阵,而上三角形阵之积仍为上三角形阵,故存在,使,命题得证。 3)由2)知,存在使 。又由1)知的所有顺序主子式与的所有顺序主子式有相同的值,故 , ,所以。 ,所以 ,因是非退化线性替换,且 ,由于都大于零,故是正定的。 8。证明:1)如果 请预览后下载!是正定二次型,那么 是负定二次型; 2)如果是正定矩阵,那么 ,这里是的阶顺序主子式; 3)