22.1 一元二次方程(1)1.一元二次方程:_____________________________________________2. 一元二次方程的一般形式:____________________________一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中ax2是____________,_____是二次项系数;bx是__________,_____是一次项系数;_____是常数项注意:二次项系数、一次项系数、常数项都要包含它前面的符号二次项系数是一个重要条件,不能漏掉3. 例 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.练一练1:判断下列方程是否为一元二次方程,为什么?2将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、及常数项:⑴ 5x2-1=4x ⑵ 4x2=81 ⑶ 4x(x+2)=25 ⑷ (3x-2)(x+1)=8x-3试一试2.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:⑴4个完全相同的正方形的面积之和是25,求正方形的边长x; ⑵一个长方形的长比宽多2,面积是100,求长方形的长x;⑶把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x。
3.px2-3x+p2-q=0是关于x的一元二次方程,则( ). A.p=1 B.p>0 C.p≠0 D.p为任意实数4.方程3x2-3=2x+1的二次项系数为_______,一次项系数为 ______,常数项为_________.8.关于x的方程(m2-m)xm+1+3x=6可能是一元二次方程吗?为什么?22.1 一元二次方程(2)1:知识准备一元二次方程的一般形式:____________________________2:探究问题: 一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?分析:设苗圃的宽为xm,则长为_______m. 根据题意,得___________________. 整理,得________________________.1)下面哪些数是上述方程的根? 0,1,2,3,4, 5, 6, 7, 8, 9, 102)一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边相等的_______________的值3)将x=-12代入上面的方程,x=-12是此方程的根吗?4)虽然上面的方程有两个根(______和______)但是苗圃的宽只有一个答案,即宽为_______.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.练习:1.你能想出下列方程的根吗? (1) x2 -36 = 0 (2) 4x2-9 = 02.下面哪些数是方程x2+x-12=0的根?-4, -3, -2, -1, 0, 1, 2, 3, 4。
例1.下面哪些数是方程x2-x-6=0的根?-4, -3, -2, -1, 0, 1, 2, 3, 4例2.你能用以前所学的知识求出下列方程的根吗?(1) (2) (3) 随堂训练1.写出下列方程的根:(1)9x2 = 1 (2)25x2-4 = 0 (3)4x2 = 22. 下列各未知数的值是方程的解的是( )A.x=1 B.x=-1 C.x=2 D. x=-23.根据表格确定方程=0的解的范围____________x1.01.11.21.30.5-0.09-0.66-1.214.已知方程的一个根是1,则m的值是______5.试写出方程x2-x=0的根,你能写出几个?1.使一元二次方程成立的____________的值,叫做一元二次方程的解,也叫做一元二次方程的________2.由实际问题列出方程并得出解后,还要考虑这些解______________【课后巩固】1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.2.一元二次方程的根是__________;方程x(x-1)=2的两根为________3.写出一个以为根的一元二次方程,且使一元二次方程的二次项系数为1:_________________。
4.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.5. 若关于X的一元二次方程的一个根是0,a的值是几?你能得出这个方程的其他根吗?6. 若,则_____________已知m是方程的一个根,则代数式________7. 如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.8. 方程(x+1)2+x(x+1)=0,那么方程的根x1=______;x2=________.9.把化成一般形式是______________,二次项是____一次项系数是_______,常数项是_______10.已知x=-1是方程ax2+bx+c=0的根(b≠0),则=( ). A.1 B.-1 C.0 D.211.方程x(x-1)=2的两根为( ).A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=212.方程ax(x-b)+(b-x)=0的根是( ).A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2,x2=b213. 请用以前所学的知识求出下列方程的根。
⑴(x-2)=1 ⑵9(x-2) 2=1 ⑶x2+2x+1=4 ⑷x2-6x+9=0拓广探索:14.如果2是方程x2-c=0的一个根,那么常数c是几?你能得出这个方程的其他根吗?15.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根. 直接开平方法解一元二次方程一桶某种油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部表面,你能算出盒子的棱长吗?我们知道x2=25,根据平方根的意义,直接开平方得x=±5,如果x换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢? 计算:用直接开平方法解下列方程:(1)x2=8 (2)(2x-1)2=5 (3)x2+6x+9=2 (4)4m2-9=0 (5)x2+4x+4=1 (6)3(x-1)2-9=108 解一元二次方程的实质是: 把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.归纳:如果方程能化成 的形式,那么可得 用直接开平方法解下列方程:(1)(3x+1)2=7 (2)y2+2y+1=24 (3)9n2-24n+16=11 练习:(1)2x2-8=0 (2)9x2-5=3 (3)(x+6)2-9=0 【课堂练习】:1、用直接开平方法解下列方程:(1)3(x-1)2-6=0 (2)x2-4x+4=5 (3)9x2+6x+1=4 (4)36x2-1=0 (5)4x2=81 (6)(x+5)2=25 (7)x2+2x+1=4 归纳小结 应用直接开平方法解形如 ,那么可得 达到降次转化之目的.【课后巩固】一、选择题1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ). A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3x2+9=0的根为( ). A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-x+1=0正确的解法是( ). A.(x-)2=,x=± B.(x-)2=-,原方程无解 C.(x-)2=,x1=+,x2= D.(x-)2=1,x1=,x2=-二、填空题 1.若8x2-16=0,则x的值是_________. 2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________. 3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______. 4.用直接开平方法解下列方程:(1)(2-x)2-81=0 (2)2(1-x)2-18=0 (3)(2-x)2=4 5.解关于x的方程(x+m)2=n.6、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.(1)鸡场的面积能达到180m2吗?能达到200m吗?(2)鸡场的面积能达到210m2吗?7.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?配方法解一元二次方程(1)解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9填空:(1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2(3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?思考?1、以上解法中,为什么在方程x2+6x=16两边加9?加其他数行吗? 2、什么叫配方法? 3、配方法的目的是什么? 这也是配方法的基本 4、配方法的关键是什么? 用配方法解下列关于x的方程(1)2x2-4x-8=0 (2)x2-4x+2=0 (3)x2-x-1=0 (4)2x2+2=5总结:用配方法解一元二次方程的步骤: 例1用配方法解下列关于x的方程:(1)。