三相晶闸管可控整流电源设计课程设计报告

上传人:M****1 文档编号:433171956 上传时间:2022-11-23 格式:DOC 页数:24 大小:918KB
返回 下载 相关 举报
三相晶闸管可控整流电源设计课程设计报告_第1页
第1页 / 共24页
三相晶闸管可控整流电源设计课程设计报告_第2页
第2页 / 共24页
三相晶闸管可控整流电源设计课程设计报告_第3页
第3页 / 共24页
三相晶闸管可控整流电源设计课程设计报告_第4页
第4页 / 共24页
三相晶闸管可控整流电源设计课程设计报告_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《三相晶闸管可控整流电源设计课程设计报告》由会员分享,可在线阅读,更多相关《三相晶闸管可控整流电源设计课程设计报告(24页珍藏版)》请在金锄头文库上搜索。

1、电力电子技术课程设计2013 2014 学年 第 二 学期 电力电子技术 课 程 设 计 报 告题 目: 三相晶闸管可控整流电源设计 专 业: 自动化 班 级: 一 班 姓 名: 高蓝旭 龚志强 郭二杰 方国昌 韩小胜 洪凯 指导教师: 焦俊生 电气工程学院2014年5月16日 2 1、任务书课题名称三相晶闸管可控整流电源设计指导教师副教授:焦俊生 执行时间20132014学年第 二 学期 第 13 周学生姓名学号承担任务高蓝旭1109111009排版的设计龚志强1109111010总结心得郭二杰1109111011查找相关资料韩小胜1109111012编写控制程序洪凯1109111013完成

2、课程设计的制作方国昌1109111008电路图的绘制设计目的1.根据所学课程,完成课程设计2. 掌握电力电子方面的知识3. 熟悉三相整流电路的内容设计要求(1)技术要求1.三相交流电源,线电压380V。2.整流输出电压URdR在0210V连续可调。3.最大整流输出电流20A。4.负载为阻感负载,且电感值较大(工作时可认为负载电流是连续平滑的直流)。(2)主要设计内容1.整流变压器额定参数的计算(选择变压器次级额定电压和变比,初、次级绕组的导线直径。计算时取导线电流密度为5A/mmP2P);2.晶闸管器件的电流、电压定额等参数的计算;3.集成触发电路的设计。(包括:触发电路的定向;触发电路采用集

3、成触发电路)。摘 要 目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。而电能的传输中,直流输电在长距离、大容量输电时有很大的

4、优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。关键字:电力电子技术 三相可控整流电路 晶闸管目录

5、摘 要1一、电力电子技术概况3二、方案选择32.1 三相桥式可控整流电路总体设计方案32.2方案选择4三 主电路原理分析53.1 电路工作原理及过程的分析53.2 电路工作原理及过程的分析63.3 电路工作原理及过程的分析73.4 电路的工作特点:9四、主电路元件计算及选择104.1、变压器参数计数104.2、电力电子器件电压、电流等定额计算114.3、平波电抗器电感值的计算124.4、电容滤波的电容计算12五、保护电路12六、相控电路的驱动控制136.1、集成触发器136.2触发电路的定相15七、结束语18八、附录19九、参考文献19十、答辩记录及评分表20T一、电力电子技术概况电力电子技术

6、分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。它是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、

7、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用整流电路是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。它的应用十分广泛,例如直流电动机,电镀,电解电源,同步发电机励磁,通信系统电源等。二、方案选择2.1 三相桥式可控整流电路总体设计方案三相可控整流电路有三相半波可控整流电路,三相半控桥式整流电路,三相全控桥式整流电路。因为三相整流裝置三相平衡的,输出的直流电压和电流脉动小,对电网影响小,同

8、时三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少,所以采用三相桥式全控整流电路,可以有效的避免直流磁化作用。虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。在实际应用中,特别是小功率场合,较多采用单相可控整流电路。当功率超过4KW时,考虑到三相负载的平衡,因而采用三相桥式全控整流电路。三相全控桥整流电路的输出电压脉动小、脉

9、动频率高,和三相半波电路相比,在电源电压相同、控制角一样时,输出电压又提高了一倍。又因为整流变压器二次绕组电流没有直流分量,不存在铁心被直流磁化问题,故绕组和铁心利用率高,所以被广泛应用在大功率直流电动机可调速系统,以及对整流的各项指标要求较高的整流装置上。保护电路整流电路380V三相交流电负载电路触发电路图2.1系统原理方框图2.2方案选择课设题目中给出的正是要求为220V、20A的直流电动机供电,它的容量为S= kw,属于高容量,所以应选用三相可控整流电路整流。另外三相桥式整流电压的脉动频率比三相半波高一倍,因而所需平波电抗器的电感量也减小约一半。三相半波虽具有接线简单的特点,但由于其只采

10、用三个晶闸管,所以晶闸管承受的反向峰值电压较高,并且电流是单方向的,存在直流磁化问题。基于以上原因,最终我选择三相桥式全控电路为电机整流。三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过12kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少。而采用三相桥式全控整流电路,可以有效的避免直流磁化作用。虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流

11、电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。在实际应用中,特别是小功率场合,较多采用单相可控整流电路。当功率超过4KW时,考虑到三相负载的平衡,因而采用三相桥式全控整流电路。三 主电路原理分析 目前在各种整流电路中,应用最为广泛的是三相桥式全控整流电路,其原理图如图书(1),习惯将其中阴极连接在一起的3个晶闸管称为共阴极组,阳极连接在一起的3个晶闸管称为共阳极组。此外,习惯上希望晶闸管按从至的顺序导通,为此将按图示的顺序编号,即共阴极组中与三相电源相接的3个晶闸管按图示的顺序编号,即共阴极组中与a,b,c三相电源相接的3个晶闸管分

12、别为共阳极组中与a,b,c三相电源相接的3个晶闸管分别为按此编号,晶闸管的导通顺序为。 下面对其带阻感负载时工作情况进行分析:先假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角时的情况。此时,对于共极组的3个晶闸管,阴极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低的一个导通。这样,任意时刻共阳极组和共阴组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。3.1 电路工作原理及过程的分析时,各晶闸管均在自然换相点处换相。由图中变压器二次绕组相电压与线电压波形的对应关系,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析的波

13、形时,既可以从相电压波形分析,也可以从线电压波形分析。直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的是最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压波形为线电压在正半周期的包络线。图3为时,即在自然换相点触发换相时,把一个周期等份6段。在第1段期间,a相电位高,因而共阴极组的晶闸管被触发导通,b相电位最低。所以共阳极组的晶闸管被触发导通,这时电流由a相经流向负载,再经流入b相,变压器a,b两相工作。经过角后,进入第2段工作时期。此时a相电位仍然最高,晶闸管继续导通,但是c相电位却变成最低。当经过自然换相点时,触发c相晶闸管,电流从b相换到c相,承受反向电

14、压而关断。这时电流由a相流出经、负载R,L、流回电源c相,变压器a,c两相工作,再经过后,进入第3段时期。此时b相电位最高,共阴极组经过自然换相点时触发导通晶闸管,电流即从a相换到b相,c相晶闸管电位仍然最低而继续导通,这时变压器b,c两相工作。在第3段期间,b相电位最高,晶闸管仍然继续导通,这时a相电位却变成最低,所以晶闸管导通,这时电流由b相流出经、负载R,L、晶闸管流回b相电源,变压器b,a两相工作。在第4段期间,c相电位最高,晶闸管导通,b相电位最低,晶闸管导通,电流由c相流出经、负载R,L、晶闸管流回电源b相,变压器c,b两相工作。图3:3.2 电路工作原理及过程的分析 ,下面给出其波,与相比,一周期中波形仍由段线电压构成,每一段导通晶闸管等仍符合表的规律。区别在于,晶闸管起始导通时刻推迟了,组成的每一段线电压因此推迟,平均值降低。阻感负载时,由于电感的作用,使得负载电流波形变得平直

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号