A2O及改进工艺处理

上传人:博****1 文档编号:432597879 上传时间:2022-08-16 格式:DOC 页数:12 大小:196KB
返回 下载 相关 举报
A2O及改进工艺处理_第1页
第1页 / 共12页
A2O及改进工艺处理_第2页
第2页 / 共12页
A2O及改进工艺处理_第3页
第3页 / 共12页
A2O及改进工艺处理_第4页
第4页 / 共12页
A2O及改进工艺处理_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《A2O及改进工艺处理》由会员分享,可在线阅读,更多相关《A2O及改进工艺处理(12页珍藏版)》请在金锄头文库上搜索。

1、一、A2/0 工艺A2/O 工艺流程简单,较易于运行管理,总的水力停留时间较短,一般缺氧区的水力停 留时间为 0.51.0 小时,泥龄也短, 一般为 35 天,使剩余污泥中磷含量高, 一般为 2.5% 以上。在反硝化脱氮过程中直接利用废水中的有机物为碳源,降低了运行。但在 A2/O 工 艺中,影响生物除磷的关键因子是厌氧池的污泥回流量。 因为从沉淀池回流污泥中会携带一 定量的硝态氮, 污泥回流量越大,携带的硝态氮越多,反硝化利用的有机物就越多,由于有 机质的减少影响了厌氧释磷, 从而导致除磷效果下降。 如果污泥回流量小, 虽然携带的硝态 氮少,但同时进入厌氧池中的聚磷菌相应减少,同样影响系统的

2、除磷功能。所以对A2/O工艺来说,污泥回流比通常控制在进水流量的0.51.0倍左右二、传统 A2/O 工艺存在的主要问题及解决途径1 、聚磷菌和反硝化菌对碳源的竞争问题在脱氮除磷 A2/O 工艺中,碳源主要消耗于释磷、反硝化和异养菌正常代谢等方面。其 中释磷和反硝化的反应速率与进入各自反应池中的易降解碳源,尤其是挥发性有机脂肪酸(VFA)的数量关系很大。我国市政污水中易降解的有机碳源相对较低,南方城市更为明显, 在 A2/O 工艺中, 聚磷菌优先利用进水中的碳源进行厌氧释磷, 使得在后续缺氧反硝化过程 中碳源不足, 从而影响脱氮效果, 因此在 A2/O 工艺中存在释磷和反硝化因碳源不足而引发

3、的竞争问题,针对这一问题提出了以下几种途径解决。1.1 改变进水方式分点进水, 在厌氧段和缺氧段根据实际情况合理分配分段进水流量,以便同时满足聚磷菌和反硝化菌对碳源的需要, 如:中国市政工程华北设计研究院结合实际工程设计, 开发应 用了多点进水倒置 A2/O工艺;杨殿海等开发的改良A2/O工艺(MAAO);李燕峰等研究的分点进水厌氧一多级缺氧好氧活性污泥工艺和 Chang 研究的 AOAO 工艺等。将生化区的 进水碳源分配给厌氧池和缺氧池来同时达到释磷和反硝化的最佳,以此解决碳源的竞争问题。1.2 一碳两用随着反硝化除磷细菌 DPB 的发现,形成了以厌氧污泥中的 PHB 为碳源的反硝化工艺,

4、如: BCFS、Dephanox 等工艺,其主要特点是碳源利用率高,在反硝化除磷工艺中,废水 中的碳源在厌氧段由 DPB 以聚羟基丁酸脂 (PHB) 的形式储存起来,在缺氧环境中这部分 PHB 被 DPB 同时用于反硝化和吸磷作用,达到了“一碳两用”的目的,但反硝化除磷工艺 目前面临着 DPB 的富集和利用不足等问题。1.3 补充碳源补充的碳源可分为两类: 一类是包括甲醇、 乙醇、丙酮和乙酸等可用作外部碳源的化合 物,另一类是易生物降解的 COD 源,它们可以是初沉池污泥发酵的上清液或其它酸性消化 池的上清液或者是某种具有大量易生物降解 COD 组分的有机废水等,如:麦芽工业废水、 水果和蔬菜

5、工业废水和果汁工业废水等。 碳源的投加位置可以是缺氧反应池, 也可以是厌氧 反应池, 在厌氧反应池中投加碳源不仅能改善除磷, 而且能增加硝酸盐的去除潜力, 因为投 加易生物降解的 COD 能使起始的脱氮速率加快,并能运行较长的一段时间。但此方法运行 费用比较高,一般适合小型污水的处理。1.4 其它方法 可以通过提高系统有机负荷来解决碳源竞争问题。 进水有机负荷与进水流量和整个系统 的有效容积有关, 一方面在有效容积不变的条件下增加进水流量; 另一方面在进水流量不变 的情况下,通过缩短运行周期减少有效容积达到提高有机负荷目的。2 反硝化菌、聚磷菌和硝化菌的泥龄矛盾 反硝化细菌和聚磷细菌为短污泥龄

6、细菌,污泥龄越短则反硝化速率越快 ,而除磷的效果也越好。而硝化细菌繁殖速度慢 ,世代周期较长 ,属长污泥龄细菌,过短的污泥龄会使系统中硝 化细菌过量外排而影响其硝化功能。因此在统一的污泥系统中,为了同时获得较好的释磷、反硝化和硝化效果,势必会造成系统运行上的泥龄矛盾。实际生产中,A2/0系统常采用10 15 d 的长污泥龄以满足硝化功能 ,因此也就造成系统在一定程度上牺牲了部分有机物降解和 除磷效率。为了使各类菌种最大程度上发挥自身的优势,研究者提出了以下几种解决途径。2.1 双污泥脱氮除磷工艺双污泥脱氮除磷工艺,如:李勇等开发的改良A2/0 双泥工艺; PASF 工艺等。该类工艺分前后两段,

7、前段采用活性污泥法,主要由厌氧池、缺氧池、短泥龄好氧池、沉淀池等构 筑物组成;后段为生物膜法, 主要采用曝气生物滤池。 污水依次流经活性污泥段和生物膜段。 系统回流包括污水回流和污泥回流, 污水回流是将部分生物滤池出水回流至缺氧池, 以保证 脱氮效果;污泥回流则是将沉淀池污泥部分回流到厌氧池,其余富含磷的剩余污泥被排掉。 采用微生物分相的方法使硝化细菌与系统内其他细菌分开培养的改进工艺,可使不同功能的微生物能在各自有利的条件下生长。 将除磷和脱氮在空间或时间上分开, 解决了聚磷菌、 硝 化菌不同泥龄的矛盾, 具有稳定的处理效果和较高的处理效率。 控制硝化滤池出水硝酸盐的 回流量, 解决厌氧段反

8、硝化与除磷菌释磷的矛盾。 创造有利于反硝化除磷菌的生长环境, 降 低了对碳源的需求。2.2 将厌氧池上清液排出,辅以化学除磷根据聚磷菌的特性, 可以在污水处理工艺中将磷酸盐富集在厌氧段的上清液中,通过排除富磷上清液达到除磷的目的, 同时可以有效克服污泥龄对硝化效果的负面影响, 而且富磷 上清液可通过化学法处理而达到磷的回收。 这样做的优点: 一是除磷效果不依赖于泥龄, 剩 余污泥减少, 可以降低污泥处理费用; 二是保证了硝化菌的生长条件, 实现长泥龄下的同时 除磷脱氮。 然而辅以化学除磷会增加运行费用, 厌氧池中进行化学除磷的上清液量也会影响 整个系统的除磷效果,同时还应考虑设备防腐问题。3

9、回流污泥中硝酸盐对厌氧释磷的影响在 A2/0 工艺中,回流污泥中含有大量的硝酸盐,回流到厌氧区后优先利用进水中的VFA 等易降解碳源进行反硝化,从而使厌氧释磷所需碳源不足,影响了系统充分释磷,从 而影响聚磷菌在好氧池中的吸磷量, 最终使除磷量减少, 使系统的除磷效率降低。 如何解决 回流污泥中硝酸盐对厌氧释磷的影响,对此研究者给出了一些解决方案。3.1 改变污泥回流点 改变污泥回流点,如 UCT、VIP 、MUCT 等工艺,与 A2/0 工艺不同之处在于沉淀池污 泥回流到缺氧池而不是回流到厌氧池, 这样可以防止由于硝酸盐氮进入厌氧池, 破坏厌氧池的厌氧状态而影响系统的除磷。 增加了从缺氧池到厌

10、氧池的混合液回流, 由缺氧池中反硝化 作用已经使硝酸盐浓度大大的降低了, 缺氧池的混合液回流不会破坏厌氧池的厌氧状态, 并 且回流的混合液中含有较多的溶解性 BOD ,从而为厌氧段内所进行的有机物水解反应提供 了最优的条件。该类工艺增加了一次回流,多一次提升,操作运行复杂,运行费用将增加。 还有一种为多点回流的A2/O 工艺。昆明第二污水处理厂和汕头东区污水处理厂就采用了这种污泥回流方式。该工艺在污泥回流位置上作了一些变动,只有小部分污泥回流到厌氧池 ,大部分则回流到缺氧池, 从而减轻了硝酸盐对释磷的影响。 但是, 由于只有小部分污泥经历 了完整的厌氧好氧过程,大部分污泥没有经过厌氧阶段就直接

11、进入缺氧和好氧环境,反 而对除磷不利。3.2 在 A 2/O 工艺前增加预缺氧段利用进水中的部分碳源先对回流污泥进行反硝化,去除去其中的硝酸盐 .如来自南非约翰内斯堡的 JHB 、A-A 2/O 和 MAAO 工艺等。回流活性污泥直接进入预缺氧区,微生物利 用部分进水中的有机物和内源反硝化去除回流硝态氮, 消除硝态氮对厌氧池的不利影响, 从 而保证厌氧池的稳定性, 有利于聚磷菌的释磷从而为好氧区的吸磷提供更大的潜力。 增加了 污泥反硝化,有助于进水中总氮的去除效率。3.3 改变缺氧池的位置通常有以下两种做法:一种是把缺氧反硝化池前置,如张波等提出的倒置A2/O 工艺,与传统 A2/O 相比,该

12、工艺的创新点在于将缺氧池置于厌氧池之前,形成了缺氧厌氧 好氧的流程形式, 缺氧池在前, 避免了回流污泥中携带的硝酸盐对厌氧区的不利影响, 聚磷 菌厌氧释磷后直接进入生化效率较高的好氧环境, 其在厌氧条件下形成的吸磷动力可以得到 更充分的利用,具有“饥饿效应”优势。将常规A 2/O 工艺的污泥回流系统与混合液内循环系统合二为一, 污泥回流比大, 允许所有参与回流的污泥全部经历完整的释磷、 吸磷过程, 故在除磷方面具有“群体效应”优势,使得排放的剩余污泥含磷量更高,流程简捷,便于管 理,节省了基建投资与运行费用。另一种是把缺氧反硝化池后置, 就是放在好氧池后面。如 杨殿海等人开发的改良 A2/O

13、工艺 (MAAO) 。将缺氧区和好氧区顺序对调,改变回流污泥的 起始点, 在反硝化结束后开始污泥回流, 经过反硝化后的污泥所含硝酸盐极少, 回到厌氧池 中经原水的稀释和反硝化后对厌氧释磷基本无影响。 并且后置反硝化由于流程上的优势取消 了内回流,大大减小能耗。三、A2O 工艺的一些影响因素1、有机负荷的影响生物除磷工艺应采用高污泥负荷、低污泥龄系统 , 是因为磷的去除是通过排泥完成 , F/M 较高时 , SRT 较小, 剩余污泥排放量较多 , 因而除磷量也多。而生物硝化属于低负荷工 艺, 负荷越低 , 硝化反应就进行得越充分 , NH3- N 向 NO3- N 转化的效率就越高 , 生物 硝

14、化是生物反硝化的前提 , 只有良好的硝化才能获得高效而稳定的反硝化 , 因此生物脱氮属 低 污 泥 负荷 系统 。 A2/O 工艺 的 运 行 实 践证 明 , 有 机 负 荷 率 在 0.100.15 gB0D5/(gMLSS d)的范围内,处理效果较好,过高的有机负荷会降低曝气池中的DO,使厌氧细菌大量生存 , 抑制了硝化细菌的生长 , 过低浓度的有机负荷则会使硝化细菌在与异养型 COD 分解细菌的竞争中处于劣势 , 降低硝化速率。 因此系统为兼顾较高的脱氮与除磷效率 , 其负荷范围较窄 , 过高的水质与水量变化对系统脱氮和除磷效率将产生较大的影响。2、污泥回流比 ( R) 和混合液回流比

15、 ( RN) 的影响回流污泥从二沉池池底回流到厌氧池 , 以保持 A2/O 系统各段污泥浓度 , 使之维持正常 的生化反应功能 , 回流污泥对系统的影响同混合液中 DO 和 NO 3- N 含量有关。如果污 泥回流比 R 太小 , 则污泥浓度过低 , 在水力停留时间不变的条件下 , 污泥负荷增高 , 会影 响各段的生化反应效率 ; 反之 , 回流比 R 太大 , 则会将过量 NO 3- N 带入厌氧池 , 抑制磷 的释放速度 , 同时大回流比也会将曝气池中溶解氧带入厌氧池 , 使异养细菌优先消耗掉挥发 性有机物 , 干扰聚磷细菌的释磷作用。因此实际生产中 , 权衡污泥回流比对工艺的影响后 ,

16、一般采用回流比 R=50%100%, 最低不可低于 40% 。混合液回流比的大小直接影响反硝 化脱氮效果,根据A2/0 工艺系统的脱氮率 n与混合液回流比 RN的关系式 n=RN/(1 + RN)可以得到两者之间相互关系。从好氧池流出的混合液,很大一部分要回流到缺氧段进行反硝化脱氮。回流比 RN 大, 则脱氮率提高 , 回流比超过 400 后, 则提高回流比对脱氮率 提升不显著 , 过高的回流需大功率回流泵 , 且消耗更多能源 , 会造成投资成本增加和运行动 力消耗过大 , 因此常规污水处理厂运行一般采用回流比 RN=300%400%。3、HRT 的影响HRT 对 C0D 去除影响影响很小, 对 NH 3N、TN、TP 的去除影响较大 NH3N、 TN 的去除率随 HRT 的增大而增加 ,TP 的去除率虽 HRT 得增大呈

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 医学/心理学 > 基础医学

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号