毕业论文基于单片机的水温控制系统设计

上传人:hs****ma 文档编号:431875786 上传时间:2022-10-01 格式:DOC 页数:31 大小:398KB
返回 下载 相关 举报
毕业论文基于单片机的水温控制系统设计_第1页
第1页 / 共31页
毕业论文基于单片机的水温控制系统设计_第2页
第2页 / 共31页
毕业论文基于单片机的水温控制系统设计_第3页
第3页 / 共31页
毕业论文基于单片机的水温控制系统设计_第4页
第4页 / 共31页
毕业论文基于单片机的水温控制系统设计_第5页
第5页 / 共31页
点击查看更多>>
资源描述

《毕业论文基于单片机的水温控制系统设计》由会员分享,可在线阅读,更多相关《毕业论文基于单片机的水温控制系统设计(31页珍藏版)》请在金锄头文库上搜索。

1、目录摘要:41 引言52 总体方案设计62.1总体方案的确定62.2 硬件方案论证83 系统硬件设计113.1系统框图11A/D113.3系统温度控制133.3.1前向通道:134 系统软件设计144.1定时中断服务程序144.2脉宽调制输出子程序154.3 系统控制总程序165 参数计算175.1 系统各模块设计及参数计算176 系统硬件与软件调试236.1 单片机基本系统调试236.2 软件调试267 CPU软件抗干扰277.1 看门狗设计278 测试方法和测试结果298.1 系统测试仪器及设备29总结31参考文献32附录 系统硬件总原理图33摘要:本系统以AT89C51,AT89C205

2、1单片机为核心,主要包括传感器温度采集,A/D模/数转换,按扭操作,单片机控制,数码管数字显示等部分。本系统采用PID算法实现温度控制功能,通过串行通信完成两片单片机信息的交互而实现温度设定、控制和显示。本设计还可以通过串口与上位机(电脑)连接,实现电脑控制。系统设计有体积小、交互性强等优点。为了实现高精度的水温控制,本单片机系统采用PID算法控制和PWM脉宽调制相结合的技术,通过控制双向可控硅改变电炉和电源的接通、断开,从而改变水温加热时间的方法来实现对水温的控制。本系统由键盘显示和温度控制两个模块组成,通过模块间的通信完成温度设定、实温显示、水温升降等功能。具有电路结构简单、程序简短、系统

3、可靠性高、操作简便等特点。1 引言目前市场上太阳能热水器的控制系统大多存在功能单一、操作复杂、控制不方便等问题,很多控制器只具有温度和水位显示功能,不具有温度控制功能即使热水器具有辅助加热功能。也可能由于加热时间不能控制而产生过烧,从而浪费电能。本文设计的太阳能热水器控制系统以MCS-51单片机为检测控制中心单元,采用DSl2887实时时钟,不仅实现了时间、温度和水位三种参数实时显示功能,而且具有时间设定、温度设定与控制功能。控制系统可以根据天气情况利用辅助加热装置(电加热器)使蓄水箱内的水温达到预先设定的温度,从而达到24小时供应热水的目的。实际应用结果表明,该控制器和以往显示仪相比具有性价

4、比高、温度控制与显示精度高、使用方便和性能稳定等优点,提高了我国太阳能应用领域控制水平,具有可观的经济效益和社会效益。水温控制系统的基本要求的要求如下: 1.一升水由1kw的电炉加热,要求水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变。2.主要性能指标a. 温度设定范围:30-90,最小区分度为1。b. 控制精度:温度控制的静态误差1。c. 用十进制数码显示实际水温。d. 能打印实测水温值。3.扩展功能a. 具有通信能力,可接受其他数据设备发来的命令,或将结果传送到其他数据设备。b. 采用适当的控制方法实现当设定温度与环境温度突变时,减小系统的调节时

5、间和超调量。c. 温度控制的静态误差1。d. 能自动显示水温随时间变化的曲线。2 总体方案设计2.1总体方案的确定2.1.1 控制方法选择由于水温控制系统的控制对象具有热存储能力大,惯性也较大的特点。水在容器内的流动或热量传递都存在一定的阻力,因而可以归于具有纯滞后的一阶大惯性环节。一般来说,热过程大多具有较大的滞后,它对任何信号的响应都会推迟一段时间,使输出与输入之间产生相移。对于这样一些存在大的滞后特性的过渡过程控制,一般来说可以采用以下几种控制方案:(1)输出开关量控制:对于惯性较大的过程可以简单地采用输出开关量控制的方法。这种方法通过比较给定值与被控参数的偏差来控制输出的状态:开关或者

6、通断,因此控制过程十分简单,也容易实现。但由于输出控制量只有两种状态,使被控参数在两个方向上变化的速率均为最大,因此容易硬气反馈回路产生振荡,对自动控制系统会产生十分不利的影响,甚至会因为输出开关的频繁动作而不能满足系统对控制精度的要求。因此,这种控制方案一般在大惯性系统对控制精度和动态特性要求不高的情况下采用。(2)比例控制(P控制)比例控制的特点是控制器的输出与偏差成比例,输出量的大小与偏差之间有对应关系。当负荷变化时,抗干扰能力强,过渡时间短,但过程终了存在余差。因此它适用于控制通道滞后较小、负荷变化不大、允许被控量在一定范围内变化的系统。使用时还应注意经过一段时间后需将累积误差消除。a

7、. 比例积分控制(PI控制)由于比例积分控制的特点是控制器的输出与偏差的积分成比例,积分的作用使得过渡过程结束时无余差,但系统的稳定性降低。虽然加大比例度可以使稳定性提高,但又使过渡时间加长。因此,PI控制适用于滞后较小、负荷变化不大、被控量不允许有余差的控制系统,它是工程上使用最多、应用最广的一种控制方法。b. 比例积分加微分控制(PID控制)比例积分加微分控制的特点是微分的作用使控制器的输出与偏差变化的速度成正比例,它对克服对象的容量滞后有显著的效果。在比例基础上加上微分作用,使稳定性提高,再加上积分作用,可以消除余差。因此,PID控制适用于负荷变化大、容量滞后较大、控制品质要求又很高的控

8、制系统。 结合本例题设计任务与要求,由于水温系统的传递函数事先难以精确获得,因而很难判断哪一种控制方法能够满足系统对控制品质的要求。但从以上对控制方法的分析来看,PID控制方法最适合本例采用。另一方面,由于可以采用单片机实现控制过程,无论采用上述哪一种控制方法都不会增加系统硬件成本,而只需对软件作相应改变即可实现不同的控制方案。因此本系统可以采用PID的控制方式,以最大限度地满足系统对诸如控制精度、调节时间和超调量等控制品质的要求。2.1.2 系统组成就控制器本身而言,控制电路可以采用急经典控制理论和常规模拟控制系统实现水温的自动团结。但随着计算机与超大规模集成电路的迅速发展,以现代控制理论和

9、计算机为基础,采用数字控制、显示、A/D与D/A转换,配额后执行器与控制阀构成的计算机控制系统,在过程控制过程中得到越来越广泛的应用。由于本例是一个典型的检测、控制型应用系统,它要求系统完成从水温检测、信号处理、输入、运算到输出控制电炉加热功率以实现水温控制的全过程。因此,应以单片微型计算机为核心组成一个专用计算机应用系统,以满足检测、控制应用类型的功能要求。另外,单片机的使用也为实现水温的智能化控制以及提供完善的人机交互界面及多机通讯接口提供了可能,而这些功能在常规数字逻辑道路中往往是难以实现或无法实现的。所以,本例采用以单片机为核心的直接数字控制系统(DDC)。2.2 硬件方案论证系统的硬

10、件接El电路包括:控制器实时时钟接口电路、蓄水箱温度和水位检测接口电路、设定键和串行显示接口电路、看门狗和复位接El电路以及继电器输出接口电路等。2.2.1 单片机系统选择方案一:8031芯片内部无ROM,需要外扩程序存储器,由此造成电路焊接的困难,况且使用8031还需要另外购买其他的芯片,如A/D转换及定时/计数器(PWM)等芯片,从而造成成本较高,性价比低。方案二: 89C51芯片内部有ROM,且片内ROM全部采用Flash ROM,它能于3V的超低压工作,与MCS-51系列单片机完全兼容,但是其不具备ISP在线编程技术, 需把程序编写好以后再放到编程器中烧写,才可以进行硬件电路的调试,倘

11、若程序编写出现问题,调试电路就比较麻烦,而且其芯片内存也只有4KB。方案三:AT89C2051、AT89C51单片机是最常用的单片机,是一种低损耗、高性能、CMOS八位微处理器。AT89C2051与MCS-51系列的单片机在指令系统和引脚上完全兼容,而且能使系统具有许多MCS-51系列产品没有的功能,功能强、灵活性高而且价格低廉。AT89S51可构成真正的单片机最小应用系统,缩小系统体积,增加系统的可靠性,降低了系统成本。只要程序长度小于4K,四个I/O口全部提供给拥护。系统运行中需要存放的中间变量较少,可不必再扩充外部RAM。经比较应采用此方案。2.2.2 温度测量模块选择方案一:用热敏电阻

12、:通过电阻的变化来获得电压的变化,起价格虽然便宜但是精度不是很高。对于一个精度要求高的系统不宜采用。方案二:用A/D590:通过AD590温度传感器采集温度,由于AD590是电流传感器,经过电阻转换为电压。虽然价格较高但是精度高。经比较,我们选择方案二2.2.3 数据接口的选择在串行通信时,要求通信双方都采用一个标准接口,是不同的设备可以方便地连接起来进行通信。当前流行的接口有:RS-232-C和RS-485。方案一:RS-232-C总线标准设有25条信号线,包括一个主通道和一个辅助通道。在多数情况下主要使用主通道,对于一般双工通信,仅需几条信号线就可实现,如一条发送线、一条接收线及一条地线。

13、RS-232-C标准规定的数据传输速率为每秒50,75,100,150,300,600,1200,2400,4800,9600,19200波特。RS-232-C标准规定,驱动器允许有2500pF的电容负载,通信距离将受此电容限制。例如,采用1 50pFm的通信电缆时,最大通信距离为l 5m。传输距离短的另一原因是RS一232属单端信号传送,存在共地噪声和不能抑制共模干扰等问题,因此一般用于20m以内的通信。方案二:RS-485总线,通信距离为几十米到上千米时,因此长距离要求时被广泛采用。RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。RS-485采用半双工工作方式,任何时候只能

14、有一点处于发送状态,因此发送电路须由使能信号加以控制。RS-485用于多点互连时非常方便,可以省掉许多信号线。应用RS一485可以联网构成分布式系统,其允许最多并联32台驱动器和32台接收器。故本系统采用RS-485接口。3 系统硬件设计3.1系统框图传 感器电炉单 片 机 基 本 系 统信号放大A/D功率放大键盘显示图3-1 单片机控制系统原理框图3.2 键盘显示电路本模块以AT89C2051单片机为核心,利用138译码器对显示器动态扫描及作为键盘的扫描线,采用此方法大大简化了硬件,充分的利用了单片机的资源,这也是本设计的巧妙所在。可同过键盘来设置温度,并显示在数码管上,并通过串口发送出去,

15、另外检测到温度通过串口接收进来,并显示在相应的数码管上键盘的扫描输入与显示器的扫描输出由单片机控制,但考虑到键盘与接口需要较多的I/O口线,如果直接由单片机控制,一方面必须扩充系统I/O口,另一方面,键盘与LED显示的扫描处理占用大量机时,增加软件编程负担。为此在组成系统人机对话通道时采用了可编程的键盘。显示接口芯片8051,由8051负责键盘扫描、消抖处理和显示输出工作。根据认为的要求,8051键盘被设计为2*8行,扫描线有SL0SL8经译码输出,接入键盘列线,查询RL0RL1提供,采用键盘扫描法对16个按键进行读取状态。使用行列式,把这16个按键分为82,采用74LS138对8行键盘轮流扫描,再通过P3.2和P3.7这2列读进来,从而判断按键是否按下。电路如图3所示。键盘的系统框图如下: 键盘显示图一 键盘显示图二3

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号