年产5万吨合成氨装置精炼工段毕业设计论文

上传人:新** 文档编号:431682569 上传时间:2023-08-05 格式:DOC 页数:26 大小:200.50KB
返回 下载 相关 举报
年产5万吨合成氨装置精炼工段毕业设计论文_第1页
第1页 / 共26页
年产5万吨合成氨装置精炼工段毕业设计论文_第2页
第2页 / 共26页
年产5万吨合成氨装置精炼工段毕业设计论文_第3页
第3页 / 共26页
年产5万吨合成氨装置精炼工段毕业设计论文_第4页
第4页 / 共26页
年产5万吨合成氨装置精炼工段毕业设计论文_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《年产5万吨合成氨装置精炼工段毕业设计论文》由会员分享,可在线阅读,更多相关《年产5万吨合成氨装置精炼工段毕业设计论文(26页珍藏版)》请在金锄头文库上搜索。

1、年产5万吨合成氨装置精炼工段毕业设计目录第一章 概述2一、精炼工段的任务2二、工艺方法的选择3(1)铜氨液洗涤法3(2)甲烷化法3(3)液氮洗涤法3三、铜氨液洗涤法的吸收原理41.铜液的组成42.铜液吸收原理43.铜液的再生原理6四、铜洗操作和铜液再生工艺条件的选择6(一)铜洗部分6(二)再生部分8五、铜液的制备9六、生产制度:10七、原料及产品的主要技术规格10第二章 物料衡算和热量衡算11一、工艺计算11二、物料衡算121.铜洗部分122. 再生部分15三、热量横算181、铜洗部分182. 铜液再生部分20四、消耗定额的计算22第三章 工艺流程图232毕业设计(论文)原创性声明和使用授权说

2、明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以

3、采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 年产5万吨合成氨装置精炼工段的设计摘要:精炼工序是合成氨生产装置中一个非常重要的工序,主要目的是去除合成氨原料气中残存的少量的CO及CO2等杂质,以免氨合成催化剂中毒。由于本设计是小型合成氨生产装置,而且经过脱硫、变换、脱碳净化后仍然具有较高含量的CO、CO2、H2S及O2和,对合成工序催化剂依然具有毒性,所以必须要进一步净化即精炼。本设计采用的精炼方法是工艺比较成熟的铜氨液溶液洗涤法。设计中介绍了铜氨液溶液洗涤法的工艺原理及工艺条件的选择,并通过物料衡算和热量衡算确定

4、了工艺过程中的消耗定额。关键字:精炼、铜液、吸收、游离氨、CO引言:本设计的依据是以南京化学工业公司合成氨生产装置。设计的精炼工序是以煤为原料年产5万吨合成氨装置中的一个工序。采用方法是原料煤通过固定床间歇法制得以H2、CO、N2为主的半水煤气,制得的半水煤气在用ADA法脱出其中的H2S,在通过一氧化碳中温变换,并用碳丙烯酯法脱出其中的大量碳后的一个工序 (CO3.1% CO2 0.2%)其目的是去除原料气中少量的CO、CO2 、H2S及O2。正文设计说明书第一章 概述 本设计的依据是以南京化学工业公司合成氨生产装置。设计的精炼工序是以煤为原料年产5万吨合成氨装置中的一个工序。采用方法是原料煤

5、通过固定床间歇法制得以H2、CO、N2为主的半水煤气,制得的半水煤气在用ADA法脱出其中的H2S,在通过一氧化碳中温变换,并用碳丙烯酯法脱出其中的大量碳后的一个工序 (CO3.1% CO2 0.2%)其目的是去除原料气中少量的CO、CO2 、H2S及O2一、精炼工段的任务 半水煤气经过脱硫、变换和脱碳后,气体中仍然含有约3%左右的CO、0.1%0.2%的CO2,0.1%0.2%的O2和微量的H2S等有害气体,如果不彻底去除,就会使氨合成催化剂中毒。因此,精炼工序的主要任务就是将脱碳工序来的原料气,通过化学或物理的方法清除,使(CO+CO2)25ml/m3。二、工艺方法的选择 精炼工序的方法有物

6、理和化学吸收法,在选择吸收的方法时要根据本课题的生产规模及前后工序的生产方法要求来进行选择。目前常用的精炼方法有: (1)铜氨液洗涤法: 铜氨液洗涤法采用铜盐的氨溶液在高压低温下吸收CO,C02,H2S,O2,然后在低压,加热下再生.通常把铜氨液洗涤法称为“铜洗”,铜氨液称为“铜液”,精制后的气体称为“铜洗气”.此法用于煤间歇制气的中、小型氨厂. (2)甲烷化法: 在催化剂存在下,CO、CO2与H2作用生成甲烷,使CO和CO2总量小于10cm3/m3由于反应要消耗H2,生成的CH4又不利于氨合成反应,因此此法只能适用于(CO+CO2)0.7%的原料气精制,通常和低温变换工艺配套。甲烷化法具有工

7、艺简单,净化度高,操作方便,费用低的优点,因此被大型氨厂普遍采用。 (3)液氮洗涤法:在空气液化分离的基础上,用低温逐级冷凝原料气中各高沸点组分,再用液氮把少量CO和CH4洗涤脱除,使CO降至10cm3/m3以下,这是物理吸收过程,它比铜洗法制得纯度更高的氢氮混合气。此法主要用于重油部分氧化、煤富氧气话的制氨流程中。结论:综合上述,本设计是小型合成氨无空分生产装置,且脱碳后CO的含量在3.5%左右,所以我们将采用铜氨液洗涤法作为本课题的精炼洗涤方法。 三、铜氨液洗涤法的吸收原理1.铜液的组成醋酸铜氨液通常称铜氨液或铜液,是由醋酸、铜、氨和水经过化学反应后制成的一种溶液。铜液的主要成分是醋酸二氨

8、合铜()Cu(NH3)2Ac,醋酸四氨合铜() Cu(NH3)4Ac2,醋酸氨(NH3Ac)和未反应的游离氨。由于吸收了空气和原料气中的二氧化碳,溶液中还含有碳酸氢铵(NH4 HCO3 )和碳酸铵(NH4 ) 2 CO3 等成分。其中醋酸二氨合铜和游离氨是吸收CO的主要成分。铜在两种配合物中分别以低价铜离子和高价铜离子两种形态存在,两者浓度之比(Cu+/Cu2+)称为铜比,两者浓度之和(Cu+Cu2+)称为总铜氨在溶液中以三种形式存在:配合氨,有Cu(NH3)2+ 、Cu(NH3)42+;固定氨,呈NH4+形态;游离氨,为物理溶解状态的氨。这三种氨浓度和称为总氨。由于铜液中存在游离氨,所以具有

9、吸收CO2和H2S的能力,且具有强烈的氨味。铜氨液的吸收能力主要决定于低价铜铜液呈碱性,pH值一般在910,并且有腐蚀性,特别对人的眼睛有强烈的伤害作用,操作时严加防护。2.铜液吸收原理 铜液对CO的吸收在有游离氨存在的条件下,Cu(NH3)2Ac和CO作用,生成一氧化碳醋酸三氨合铜,反应式为:Cu(NH3)2Ac + CO + NH3 = Cu(NH3)3AcCO + Q这是一个包括气液相平衡和液相中化学平衡的化学吸收过程。首先是气体中的CO与铜液接触被溶解,然后CO再与低价铜和氨反应生成配合物,并放出热量。提高压力,降低温度,可以提高CO在铜液中的溶解度,有利于气体中CO的吸收。同时由于吸

10、收反应是可逆放热体积缩小的反应,所以提高压力降低温度,增加铜氨液中低价铜和游离氨的浓度,也有利于CO吸收反应的进行。铜液吸收CO的过程是CO从气相主体扩散到气液相界面,与溶液进行化学反应,然后生成物再扩散到液相主体。在游离氨浓度较大时,溶液吸收CO的化学反应速度很快,这个吸收速度取决于CO从气相扩散到液相界面的扩散速度。因此采用高效率的铜洗塔,强化传质过程,可提高吸收CO的速度。 铜液对CO2、O2、H2S的吸收铜液除了能吸收CO外,同时还可以吸收CO2、O2和H2S。 对CO2的吸收是依靠铜液中的游离氨,反应式如下:2CO2 + NH3 + H2O = (NH3)2CO3 + Q(NH3)2

11、CO3 + NH3 + H2O = 2NH3HCO3 + Q 以上的两个反应是放热反应,能使吸收塔中铜液的温度上升,从而影响铜液的吸收能力,同时生成的碳酸铵和碳酸氢铵在低温时容易结晶,当HAc和NH3不足时,还会生成碳酸铜沉淀。因此,为保证铜洗操作的正常进行,进入铜洗系统的原料气中CO2的含量不能太高,并且铜液中应有足够的醋酸和氨含量。 对H2S的吸收也是依靠铜液中的游离氨,反应式如下:2NH3H2O + H2S = (NH4)2S + 2H2O + Q同时溶解在铜液中的H2S还能与低价铜反应生成硫化亚铜沉淀:2Cu(NH3)2Ac + 2H2S = Cu2S+ 2NH4Ac + (NH4)2

12、S这是一个不可逆的反应,因此原料气中微量的H2S能将铜液中的铜完全除去,生成了不能再生的硫化亚铜沉淀,不仅容易堵塞管道和设备,降低总铜的含量,影响铜液的吸收能力,并且使铜液变黑,粘度增大,容易造成带液事故。所以,要求进铜洗系统的原料气中H2S的含量越低越好。 铜液吸收O2是依靠低价铜离子进行的,其反应式如下:4Cu(NH3)2Ac + 4NH4Ac + 4NH3H2O + O2 = 4 Cu(NH3)4Ac2 +6 H2O + Q这是一个不可逆的氧化反应,能够很完全地把氧脱除。但铜液吸收后,使低价铜氧化成高价铜,而且消耗了游离氨,因而降低了铜液的吸收能力。根据以上分析,原料气中的CO2、H2S

13、和O2的含量不能太高,否则会影响铜液的吸收能力。3.铜液的再生原理铜液在铜洗塔内吸收了CO 、CO2、H2S和O2后,吸收能力下降,甚至失去吸收能力。为了恢复其吸收能力,必须进行再生,循环使用。再生的作用:一是使铜液中吸收的CO 、CO2、H2S在减压加热的条件下解吸出来;二是使铜液中被氧化所生成的高价铜还原成低价铜,调节铜比。此外还要适当补充铜液在整个过程中所消耗的氨、铜、HAc和水。铜液在减压加热的条件下首先解吸出所吸收的CO 、CO2、H2气体,其反应是吸收过程的逆过程。反应式如下:Cu(NH3)3AcCO Cu(NH3)2Ac + CO + NH3 Q(NH3)2CO3 2NH3+ C

14、O2+ H2O QNH3HCO3 NH3+ CO2+ H2O Q(NH3)2S 2NH3+ H2S Q解吸反应是吸热和体积增加的反应,因此,升高温度,降低压力对解吸反应有利。再生过程中,还有高价铜还原成低价铜的还原反应,是依靠CO的还原作用。反应如下:Cu(NH3) 2+ + CO + H2O 2Cu + CO2+ 2NH4+ + 2NH3Q生成的金属很活泼,在高价铜存在的条件下再被氧化成低价铜:Cu + Cu2+ = 2Cu+ Q同时,高价铜也可以直接被CO还原:2Cu(NH3) 42+ + CO + H2O 2Cu(NH3) 2+ + CO2+ 2NH4+ Q由此可见铜比的提高主要是CO的作用,如果铜液中的CO少,还原作用弱,铜比难以提高,所以要保证再生过程中的还原反应,才能维持正常的生产铜比。四、铜洗操作和铜液再生工艺条件的选择(一)铜洗部分1.铜液的成分 总铜:铜比一定,总铜的含量增加,低价铜离子增加,能提高铜液吸收CO的能力。但是,总铜含量取

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 大杂烩/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号