河南省2023届高三下学期3月大联考数学(文)试卷(含答案)

上传人:卷**** 文档编号:428435120 上传时间:2024-03-26 格式:DOCX 页数:12 大小:692.05KB
返回 下载 相关 举报
河南省2023届高三下学期3月大联考数学(文)试卷(含答案)_第1页
第1页 / 共12页
河南省2023届高三下学期3月大联考数学(文)试卷(含答案)_第2页
第2页 / 共12页
河南省2023届高三下学期3月大联考数学(文)试卷(含答案)_第3页
第3页 / 共12页
河南省2023届高三下学期3月大联考数学(文)试卷(含答案)_第4页
第4页 / 共12页
河南省2023届高三下学期3月大联考数学(文)试卷(含答案)_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《河南省2023届高三下学期3月大联考数学(文)试卷(含答案)》由会员分享,可在线阅读,更多相关《河南省2023届高三下学期3月大联考数学(文)试卷(含答案)(12页珍藏版)》请在金锄头文库上搜索。

1、河南省2023届高三下学期3月大联考数学(文)试卷学校:_姓名:_班级:_考号:_一、选择题1已知集合,则( )A.AB.BC.D.2已知复数z满足,则( )A.1B.C.2D.3已知函数,则( )A.0B.1C.2D.34已知数列为等差数列,其前n项和为,若,则( )A.0B.2C.4D.85已知,则这三个数的大小关系为( )A.B.C.D.6已知,函数都满足,又,则( )A.3B.C.D.7已知角满足,则( )A.B.C.D.8下列选项正确的是( )A.B.C.的最小值为D.的最小值为9已知函数的图象关于点中心对称,其最小正周期为T,且,则( )A.B.C.1D.10已知点O为所在平面内一

2、点,在中,满足,则点O为该三角形的( )A.内心B.外心C.垂心D.重心11已知正四棱柱中,点M为的中点,若P为动点,且,则P点运动轨迹与该几何体表面相交的曲线长度为( )A.B.C.D.12已知函数,若恒成立,则实数a的最大值为( )A.B.C.2eD.二、填空题13已知函数的导函数为,且,则_.14某研究所收集,整理数据后得到如下列表:x23456y3791011由两组数据可以得到线性回归方程为,则_.15已知椭圆的左,右焦点分别为,P为椭圆C在第一象限内的一点,则点P的横坐标为_.16记的内角A,B,C的对边分别为a,b,c,若外接圆面积为,则面积的最大值为_.三、解答题17已知首项为1

3、的等差数列的前n项和为,且满足,.(1)求数列的通项公式;(2)若,记为的前n项和,求.18我国某医药研究所在针对某种世界疾病难题的解决方案中提到了中医疗法,为证实此方法的效用,该研究所购进若干副某种中草药,现按照每副该中草药的重量大小(单位:克)分为4组:,并绘制频率分布直方图如下所示:(1)估计每副该中草药的平均重量(同一组中的数据用该区间的中点值作代表);(2)现从每副重量在,内的中草药中按照分层抽样的方式一共抽取6副该中草药,再从这6副中草药中随机取出2副进行分析,求取出的2副中仅有1副重量在中的概率.19如图,在四棱锥中,底面四边形ABCD为矩形,平面ABCD,H为DC的中点.(1)

4、求证:平面平面POC;(2)求三棱锥体积的最大值.20已知抛物线的焦点为F,点E在C上,以点E为圆心,为半径的圆的最小面积为.(1)求抛物线C的标准方程;(2)过点F的直线与C交于M,N两点,过点M,N分别作C的切线,两切线交于点P,求点P的轨迹方程.21已知函数.(1)求曲线在处的切线在x轴上的截距;(2)当时,证明:函数在上有两个不同的零点,且当时,.22在平面直角坐标系xOy中,直线l过点,且倾斜角为,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的参数方程是为(参数).(1)求曲线C的普通方程和直线l的参数方程;(2)已知曲线C与直线l相交于A,B两点,则的值.23已知

5、函数.(1)求函数的最小值;(2)设,若的最小值为m,且,求的最大值.参考答案1答案:A解析:根据题意得,则,所以.故选A.2答案:B解析:根据题意,设,所以,所以,所以或,所以复数或,所以.故选B.3答案:B解析:根据题意,故.故选B.4答案:C解析:因为数列为等差数列,故,故,则.故选C.5答案:B解析:根据题意,比较可得.故选B.6答案:D解析:根据题意,则,故,所以函数的周期为6,所以.故选D.7答案:D解析:由得,即,解得,可得,或,所以,故选D.8答案:D解析:根据题意,当与为负数时,根据不等式可得,选项A不正确;因为x不一定为正数,由A可知,选项B不正确;令,所以的最小值为3,选

6、项C不正确;,因为,所以,选项D正确.故选D.9答案:D解析:根据题意,因为的图象关于点中心对称,分析可得,则,所以,则,解得,又因为最小正周期为T,且,所以,则,所以的值为.故选D.10答案:B解析:根据题意,即,所以,可得向量在向量上的投影为的一半,可分析出点O在边AB的中垂线上,同理可得,点O在边AC的中垂线上,所以点O为该三角形的外心.故选B.11答案:A解析:根据题意,分析可知点P的运动轨迹与几何体表面所交部分可看成2个半径为1的圆和2个半径为1的半圆,长度为.故选A.12答案:C解析:当与直线相切时,设切点为,又,所以该切线方程为,易知切线过点,代入切线方程可得或.易得,当时,;当

7、时,结合图象可得实数a的最大值为2e.故选C.13答案:解析:根据题意,则,故,故.14答案:0.4解析:根据题意可得,又,所以.15答案:2解析:由题知,设,则,由余弦定理得,即,所以,又,所以,所以,所以,所以,代入,得,又点P位于第一象限,所以点P的横坐标为2.16答案:解析:由已知及正弦定理得,所以,所以,又,所以.由的外接圆面积为,得外接圆的半径为1.由正弦定理得,所以,所以,解得,所以的面积,当且仅当时等号成立.17答案:(1)见解析(2)见解析解析:(1)设等差数列的公差为d,由,得,得得,则,所以,所以数列.(2)根据题意得,所以.18答案:(1)(2)解析:(1)根据题意可得

8、(克),所以每副该中草药的平均重量约为32克.(2)根据题意可得,按照分层抽样的方式,取出的6副该中草药中重量在中的有4副,重量在中的有2副,记重量在中的4副中草药为,重量在中的2副中草药为,从中抽取2副,所有可能的结果有,共15种,其中仅有1副重量在中的有,共8种,所以所求概率为.19答案:(1)见解析(2)解析:(1)证明:,H为DC中点,平面ABCD,平面ABCD,平面POC,平面POC,平面POC,又平面DPO,平面平面POC.(2)由(1)可知,点O在以CD为直径的圆上,当时,的面积最大,又,三棱锥体积的最大值为.20答案:(1)(2)解析:(1)设点,则,因为以E为圆心,以为半径的

9、圆的最小面积为,所以,所以,解得,所以抛物线C的标准方程为.(2)设,易得,由题意知直线MN的斜率一定存在,则设直线MN的方程为,联立得,所以,.由,得,则切线的斜率为,则切线的方程为,即.同理可得切线的方程为.得,代入得,所以点P的轨迹方程为.21答案:(1)(2)见解析解析:(1),又,所以,则曲线在处的切线方程为,令得,故切线在x轴上的截距为.(2)证明:要证函数在上有两个不同的零点,只需证方程在上有两个不同的实数解,即证方程在上有两个不同的实数解,设,则,当时,;当时,所以在上单调递减,在上单调递增,因为,所以存在,使得;又,所以存在,使得,故函数在上有两个不同的零点,.由上易知,两式相加得,两式相减得,则,令,则,所以,设,则,所以在上单调递减,则,故当时,.22答案:(1)(2)解析:(1)根据题意,由得即,曲线C的普通方程为;由直线l过点,倾斜角为,得直线l的参数方程为(t为参数).(2)根据题意,联立直线l的参数方程与曲线C的普通方程可得,化简得,可得,则.23答案:(1)3(2)解析:(1)依题意得当时,可得函数取最小值3.(2)由(1)可得,根据柯西不等式可得,当且仅当时等号成立,的最大值为.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 试题/考题 > 高中试题/考题

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号