单片机电子钟课程设计数字电子钟

上传人:工**** 文档编号:423615524 上传时间:2022-08-21 格式:DOC 页数:24 大小:605KB
返回 下载 相关 举报
单片机电子钟课程设计数字电子钟_第1页
第1页 / 共24页
单片机电子钟课程设计数字电子钟_第2页
第2页 / 共24页
单片机电子钟课程设计数字电子钟_第3页
第3页 / 共24页
单片机电子钟课程设计数字电子钟_第4页
第4页 / 共24页
单片机电子钟课程设计数字电子钟_第5页
第5页 / 共24页
点击查看更多>>
资源描述

《单片机电子钟课程设计数字电子钟》由会员分享,可在线阅读,更多相关《单片机电子钟课程设计数字电子钟(24页珍藏版)》请在金锄头文库上搜索。

1、单片机技术课程设计说明书 数字电子钟 摘 要:AT89C52 ATMEL公司生产的低电压,高性能CMOS 8位单片机片内含8K byTES的可反复擦写的只读程序存储器(PEROM)和256 byTES 。的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,与标准MCS-51指令系统及8052 产品引脚兼容,片内置通用8位中央处理器(CPU )和FLASH由存储单元,功能强大AT89C52单片适用于许多较为复杂控制应用场合。主要性能参数:与Mcs-51产品指令和引脚完全兼容。8字节可重擦写FLASH闪速存储器1000 次擦写周期全静态操作:0HZ-24MHZ三级

2、加密程序存储器256X8字节内部RAM32个可编程I/0口线3个16 位定时计数器8个中断源可编程串行UART通道低功耗空闲和掉电模式电子钟是一种用电子电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。电子钟从原理上讲是一种典型的电子电路,其中包括了组合逻辑电路和时序电路。目前,电子钟的功能越来越强,并且有多种专门的大规模集成电路可供选择。从有利于学习的角度考虑,这里主要介绍以中小规模集成电路设计电子钟的方法。经过了电子电路设计这门课程的系统学习,特别经过了关于组合逻辑电路与时序逻辑电路部分的学习,我们已经具备

3、了设计小规模集成电路的能力,借由本次设计的机会,充分将所学的知识运用到实际中去。本次课程设计要求设计一个电子钟,基本要求为电子钟的时间周期为24小时,电子钟显示时、分、秒,电子钟的时间基准一秒对应现实生活中的时钟的一秒。因此,研究电子钟,有着非常现实的意义。目 录 摘要2 第一章 系统的组成及工作原理4 1.1 设计要求41.2 系统的组成41.3 系统的工作原理4第二章 系统硬件电路方案设计72.1 电子时钟方案72.2 数码显示方案7 2.3 单元电路设计8 2.2.1 晶体振荡电路8 2.2.2 复位电路8 2.2.3 显示电路9 2.2.4 键盘电路9第三章 系统的软件设计103.1

4、程序流程图103.2 源程序11第四章 系统调试174.1 软件调试174.2 硬件调试17第五章 设计体会和结论18 参考文献19 致谢20 附录一:电路原理图21附录二:PCB图22附录三:数码管元件清单23 第一章 系统组成及工作原理1.1 系统设计要求设计一个具有特定功能的电子钟。该电子钟上电或按键复位后能自动显示系统提示符“P.”, 进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从0时0分0秒开始运行,进入时钟运行状态;再次按电子钟启动/调整键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按启动/调整键再次进入时钟运行状态。1.2 系统的组成数字钟实际上是

5、一个对标准频率(1HZ)进行计数的计数电路.由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,同时标准的1MHZ时间信号必须做到准确稳定.通常使用石英晶体振荡器电路构成数字钟. (1) 晶体振荡器 晶体振荡器给数字钟提供一个频率稳定准确的11.0592MHz的方波信号,可保证数字钟的走时准确及稳定.不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器。(2) 复位电路 时间计数电路由秒个位和秒十位计数器,分个位和分十位计数器,时个位和时十位电路构成,秒个位和秒十位计数器,分个位和分十位计数器为60进制计数器,时个位和时十位计数器为24进制计数器。(3) 数码管 数码管

6、通常有发光二极管(LED)数码管和液晶(LCD)数码管,本设计提供的为LED数码管。(4) 键盘 键盘是控制和修改时钟的重要输入模块,通过键盘可以修改时间,修改年月日,修改闹钟时间,控制显示等。1.3 系统工作原理VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P

7、1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。 P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,

8、P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。 P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3口第二功能口。 RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。 ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为

9、振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。 PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。 EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期

10、间,此引脚也用于施加12V编程电源(VPP)。 XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。 XTAL2:来自反向振荡器的输出。数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE第二章 系统硬件电路方案设计2.1 电子时钟方案电子时钟是本设计的最主要的部分。根据需要,可利用两种方案实现。方案一:本方案采用Dallas公司的专用时钟芯片DS12887A。该芯片内部采用石英晶体振荡器,其芯片精度不大于10ms/年,且具有完备的时钟闹钟功能,因此,可直接对其以用于显示或设置,使得软件编程相对简单。为保证时钟在电网电压不足或突然掉电等突发情

11、况下仍能正常工作,芯片内部包含锂电池。当电网电压不足或突然掉电时,系统自动转换到内部锂电池供电系统。而且即使系统不上电,程序不执行时,锂电池也能保证芯片的正常运行,以备随时提供正确的时间。方案二:本方案完全用软件实现数字时钟。原理为:在单片机内部存储器设6个字节分别存放时钟的时、分、秒信息。利用定时器与软件结合实现1秒定时中断,每产生一次中断,存储器内相应的秒值加1;若秒值达到60,则将其清零,并将相应的分字节值加1;若分值达到60,则清零分字节,并将时字节值加1;若时值达到24,则将十字节清零。该方案具有硬件电路简单的特点。但由于每次执行程序时,定时器都要重新赋初值,所以该时钟精度不高。而且

12、,由于是软件实现,当单片机不上电,程序不执行时,时钟将不工作。基于硬件电路的考虑,本设计采用方案二完成数字时钟的功能。2.2 数码管显示方案方案一:静态显示。所谓静态显示,就是当显示器显示某一字符时,相应的发光二极管恒定的导通或截止。该方式每一位都需要一个8 位输出口控制。静态显示时较小的电流能获得较高的亮度,且字符不闪烁。但当所显示的位数较多时,静态显示所需的I/O口太多,造成了资源的浪费。方案二:动态显示。所谓动态显示就是一位一位的轮流点亮各个位,对于显示器的每一位来说,每隔一段时间点亮一次。利用人的视觉暂留功能可以看到整个显示,但必须保证扫描速度足够快,字符才不闪烁。显示器的亮度既与导通

13、电流有关,也于点亮时间与间隔时间的比例有关。调整参数可以实现较高稳定度的显示。动态显示节省了I/O口,降低了能耗。从节省I/O口和降低能耗出发,本设计采用方案二。2.3 单元电路设计2.3.1 晶体振荡电路时钟电路原理图。如图2.1所示,在AT89S51芯片内部有一个高增益反相放大器,其输入端为芯片引脚XTAL1,输出端为引脚XTAL2。而在芯片内部,XTAL1和XTAL2之间跨接晶体振荡器和微调电容,从而构成一个稳定的自激振荡器。时钟电路产生的振荡脉冲经 过触发器进行二分频之后,才成为单片机的时钟脉冲信号。 图2.1 晶体振荡电路2.3.2 复位电路单片机复位的条件是:必须使RST/VPD 或RST引脚加上持续两个机器周期(即24个振荡周期)的高电平。例如,若时钟频率为12 MHz,每机器周期为1s,则只需2s以上时间的高电平,在RST引脚出现高电平后的第二个机器周期执行复位。单片机常见的复位如图2.2所示。电路为上电复位电路,

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 资格认证/考试 > 自考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号