IC反应器的设计

上传人:re****.1 文档编号:413054981 上传时间:2023-11-10 格式:DOC 页数:22 大小:351.50KB
返回 下载 相关 举报
IC反应器的设计_第1页
第1页 / 共22页
IC反应器的设计_第2页
第2页 / 共22页
IC反应器的设计_第3页
第3页 / 共22页
IC反应器的设计_第4页
第4页 / 共22页
IC反应器的设计_第5页
第5页 / 共22页
点击查看更多>>
资源描述

《IC反应器的设计》由会员分享,可在线阅读,更多相关《IC反应器的设计(22页珍藏版)》请在金锄头文库上搜索。

1、-IC反响器设计参考loser1. 设计说明IC反响器,即循环厌氧反响器,相似由2层UASB反响器串联而成。其由上下两个反响室组成。在处理高浓度有机废水时,其进水负荷可提高至3550kgCOD/(m3d)。与UASB反响器相比,在获得一样处理速率的条件下,IC反响器具有更高的进水容积负荷率和污泥负荷率,IC反响器的平均升流速度可达处理同类废水UASB反响器的20倍左右。设计参数(1) 参数选取设计参数选取如下:第一反响室的容积负荷NV135kgCOD/(m3d),:第二反响室的容积负荷NV212kgCOD/(m3d);污泥产率0.03kgMLSS/kgCOD;产气率0.35m3/kgCOD(2

2、) 设计水质设 计 参 数CODcrBOD5SS进水水质/ (mg/L)120006000890去除率/ %858030出水水质/ (mg/L)18001000623(3) 设计水量Q3000m3/d125m3/h=0.035m3/s2. 反响器所需容积及主要尺寸确实定见附图6-4(1) 有效容积 本设计采用进水负荷率法,按中温消化3537、污泥为颗粒污泥等情况进展计算。V 式中 V反响器有效容积,m3;Q废水的设计流量,m3/d;本设计流量日变化系数取Kd=1.2,Q=3600 m3/dNv容积负荷率,kgCOD/m3d;C0进水COD浓度,kg/m3; mg/L =10-3kg/m3,设计

3、取24.074 kg/m3Ce出水COD浓度,kg/m3。设计取3.611kg/m3本设计采用IC反响器处理高浓度废水,而IC反响器部第一反响室和第二反响室由于部流态及处理效率的不同,这里涉及一,二反响室的容积。据相关资料介绍,IC反响器的第一反响室相当于EGSB去除总COD的80左右,第二反响室去除总COD的20左右。第一反响室的有效容积V1700m3第二反响室的有效容积V1510m3IC反响器的总有效容积为V7005101210m3,这里取1250m3(2) IC反响器几何尺寸 小型IC反响器的高径比H/D一般为48,高度在1520m,而大型IC反响器高度在2025m,因此高径比相对较小,

4、本设计的IC反响器的高径比为2.5.H=2.5/DVAH则D=8.2m,取9m,体积V利用高径比推直径D,再由D反推IC高度。这部可以直接求得底面积H2.5922.5m,取23m。每个IC反响器总容积负荷率:NV24.5kgCOD/(m3d)IC反响器的底面积A63.6m2,则第二反响室高 H28m.第一反响室的高度 H1HH223815m(3) IC反响器的循环量进水在反响器中的总停留时间为tHRT10h设第二反响室液体升流速度为4m/hIC反响器里第二反响室的上升流速一般为210m/h,则需要循环泵的循环量为256m3/h。(可能为VA=254.4m3/h)第一反响室液体升流速度一般为10

5、20m/h,主要由厌氧反响产生的气流推动的液流循环所带动。第一反响室产生的沼气量为Q沼气QC0Ce0.80.35式中废水量Q=3000m3/d, C0和Ce分别为进出水COD浓度,0.8为第一反响室的效率,0.35为每千克去除的COD转化为0.35m3的沼气。则第一反响室沼气量为:3000121.80.80.358568m3/d 每立方米沼气上升时携带12m3左右的废水上升至反响器顶部,顶部气水别离后,废水从中心管回流至反响器底部,与进水混合后。由于产气量为8568 m3/d,则回流废水量为856817136 m3/d,即357714 m3/h,加上IC反响器废水循环泵循环量256 m3/h,

6、则在第一反响室中总的上升水量到达了613970 m3/h,V流速=Q/A上流速度可达9.6815.25m/h,IC反响器第一反响室上升流速一般为1020m/h,可见IC反响器设计符合要求。(4) IC反响器第一反响室的气液固别离 不同于UASB反响器顶部的三项别离系统,IC第一反响室的顶部功能主要为气体收集和固液两相别离。较高的上升流速的废水流至第一反响室顶部,大局部液体和颗粒污泥随气体流入气室上升IC反响器顶部的气液固别离器,局部液体和固体流入三相别离器,颗粒污泥在别离器上部静态区沉淀,废水从上部隔板流入第二反响室。图6-4为第一反响室顶部气液固别离器流态示意。IC反响器第一反响室的气液固别

7、离设计 第一反响室三相别离器的气液固三相别离是IC最重要组成局部,是IC反响器最有特点的装置,它对该种反响器的高效率起了十分重要的作用。其设计直接影响气液固三项别离及部循环效果。 高效的三项别离器应具备以下几个功能:气液固混合液中气体不得进入沉淀区,即流体污泥与水混合物进入沉淀区之前,气体必须进展有效地别离去除,防止气体在沉淀区干扰固,液的别离;沉淀区液流稳定,使其具备良好的固液别离效果;沉淀别离的局部固体污泥能迅速通过斜板返回到反响器,以维持反响器很高的污泥浓度和较长的泥龄;防止上浮污泥洗出,提高出水净化效果。为了到达上述要求,进展了许多研究开发。 IC反响器有上.下两个三相别离器,第一反响

8、室三相别离器严格 意义上讲是不别离三相物质,不别离气体,仅别离液固体。IC反响器的第二反响器流态与UASB极为相似。一反响室的气液固别离器构造设计。 第一反响室气液固三相别离器通过挡板将气液固收集,气体和颗粒污泥受挡板的导流通过集气罩进入上升导流管,其中颗粒污泥受强大水流的作用在上升管中流速大于0.5m/s和气液一起流入反响器顶部的气液固别离器。局部液体含少量颗粒污泥通过上下导流板进入别离器上部的沉淀区,在该区域所受水流影响较小,颗粒沉降从回流缝回到反响区域,废水则进入第二反响室处理。 图6-5为第一反响室三相别离器设计示意图。图6-6为第一反响室三相别离器俯视图。(6) IC反响器第一反响室

9、的气液固别离几何尺寸沉淀区设计三相别离器沉淀区固液别离是靠重力沉淀到达的,其设计的方法与普通二沉池设计相似,主要考虑沉淀面积和水深两相因素。一般情况下沉淀区的沉淀面积即为反响器的水平面积;沉淀区的外表负荷率的大小与需要去除的污泥颗粒重力沉降速度vs数值相等,但方向相反。据报道,颗粒污泥沉降速度一般在100m/h以上,沉降速度50m/h的颗粒污泥被认为沉降性能良好。颗粒在水中的沉降速度常用Stokes 公式计算。颗粒污泥沉降性能的好坏主要取决于颗粒的有效直径和密度。处于自由沉降状态的污泥的自由沉降速度可用公式6-2计算。根据Stokes:vs式中颗粒污泥沉降速度,cm/s或36m/h颗粒污泥密度

10、,g/cm3清水密度,g/cm3颗粒直径。cm重力加速度,981cm/s2水的粘滞系数,g/(cm.s)水的运动粘滞系数,cm2/s水温,上式可求出不同粒径颗粒污泥在清水中的自由沉降速度,并以它近似地代表颗粒污泥的实际自由沉降速度。 设温度为35,则水的运动粘滞系数为: = =0.0071(cm2/s)IC反响器由于升流速度较大,细小颗粒容易被冲刷而使反响器细小颗粒的比例减小,因此颗粒污泥的粒径较粗。平均直径在1.02.0mm,最大颗粒直径为3.143.57mm;颗粒密度为1.041.06g/cm3。 清水密度近似取1g/cm3,则=0.0071g/(cms);颗粒污泥密度取1.05g/cm3

11、,一般IC反响器中颗粒直径大于0.1cm,算得沉降速度vs:vs= 三相别离器单元构造构造示意图见图6-7。三相别离器中物质流态示意图见图6-8,图中v1为上升液流流速,vs为气泡上升速度。 计算B-B间的负荷可以确定相邻两上挡板间的距离。三相别离器平面上共有10个气固液别离单元,中部被集气罩分隔如图6-5,图6-6所示。B-B间水流上升速度一般小于20m/h(1.0mm直径的颗粒污泥沉降速度在100m/h以上),则B-B间总面积S为:S12.7m2式中Q为IC反响器循环泵的流量。S=,则=0.45m,即相邻两上挡板间的间距为450mm。两相邻下挡板间的间距b2200mm;上下挡板间回流缝b3

12、150mm,板间缝隙液流速度为30m/h;气封与下挡板间的距离b4100mm;两下挡板间距离CCb5400mm,板间液流速度大于25m/h。沉淀区斜壁角度与别离器高度设计 三相别离器沉淀区斜壁倾斜角度选50一般4560之间,上挡板三角顶与集气罩相距300mm。设计IC反响器=0.85m,=0.7m。气液别离的设计 欲到达较好的气液别离效果,气罩需与下挡板有一定的重叠。重叠的水平距离C的投影越大,气体别离效果越好,去除气泡的直径越小,对沉淀区固液别离的效果影响越小。所以重叠量的大小是决定气液别离效果好坏的关键所在,重叠量一般为1020cm。根据以上计算,上下三角形集气罩在反响器的位置已经确定。对

13、已确定的三相别离器的构造进展气,液别离条件的校核。如图6-8所示,当混合液上升至A点后,气泡随液体以速度v1沿斜面上升,同时,气泡受浮力的作用有垂直上升的速度vg,所以气泡将沿着v1和vg合成速度v合的方向运动。要使气泡不随回流缝液体流向沉淀区,vg+v1的合成速度v合必须大于回流缝中液体流速v回流30m/h。图6-9是气泡在下挡板边缘流态示意图。气泡上升流速v1的大小与其直径.大小.水温液体和气体的密度.液体的粘滞系数等因素有关。当气泡直径很小d0.1mm时围绕气泡的水流呈层流状态,Re1,这时气泡上升速度用Stokes公式计算:式中 气泡直径,cm取0.01cm;液体密度,g/cm3,取1

14、.02g/cm3;沼气密度,g/cm3,取1.210-3g/cm3废水动力粘滞系数,g/(cms) 废水的一般比净水大,这里取210-2 g/(cms)碰撞系数,取0.95重力加速度,cm/s2(取981 cm/s2)所以,则合速度的计算量为:可见合速度大于回流缝的回流速度,保证气相不进入沉淀区。反响器顶部气液别离器的设计 IC顶部气液别离器的目的是别离气和固液由于采用切线流状态,上局部离器中气和固液别离较容易,这里设计直径为3m的气液别离器,筒体高2m,下锥底角度65,上顶高500mm。IC反响器进水配水系统的设计设计说明 布水区位于反响器的下端,其根本功能:一是将待处理的废水均匀地分布在反响区的横断面上,因为生产装置的横断面往往很大,均匀布水的难度高,需设置复杂的进水分布系统;二是水力搅拌,因为进入水流的动能会使进水孔口周围产生纵向环流,有助于废水中污染物与颗粒污泥的接触,从而提高反响速率,同时也有利于颗粒污泥上粘附的微小气泡脱离,防止其上浮。为实现这两个功能,设计时应满足以下原则。1.确保各单位面积的进水量根本一样,以防短路或外表符合不均匀等现象的发生。实践证明,只有当负荷过低或配水系统不合理时会发生沟流。2.尽可能满足水力搅拌需要,促使水中污染物与污泥迅速混合。3.易于观察到进水管的堵塞,一旦发生堵塞,便于疏通。4.IC反响器进水管上设置调节阀

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 商业计划书

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号