氮化硅陶瓷讲解

上传人:公**** 文档编号:408922570 上传时间:2023-02-26 格式:DOC 页数:9 大小:261KB
返回 下载 相关 举报
氮化硅陶瓷讲解_第1页
第1页 / 共9页
氮化硅陶瓷讲解_第2页
第2页 / 共9页
氮化硅陶瓷讲解_第3页
第3页 / 共9页
氮化硅陶瓷讲解_第4页
第4页 / 共9页
氮化硅陶瓷讲解_第5页
第5页 / 共9页
点击查看更多>>
资源描述

《氮化硅陶瓷讲解》由会员分享,可在线阅读,更多相关《氮化硅陶瓷讲解(9页珍藏版)》请在金锄头文库上搜索。

1、氮化硅陶瓷与其制备成型工艺氮化硅(Si3N4)是氮和硅的化合物。在自然界里,氮、硅都是极其普通的元素。氮是生命的基础,硅是无机世界的主角,这两种元素在我们生活的世界上无所不在,然而,至今人们还未发现自然界里存在这两种元素的化合物。氮化硅是在人工条件下合成的化合物。虽早在140多年前就直接合成了氮化硅,但当时仅仅作为一种稳定的“难熔”的氮化物留在人们的记忆中。二次大战后,科技的迅速发展,迫切需要耐高温、高硬度、高强度、抗腐蚀的材料。经过长期的努力,直至1955年氮化硅才被重视,七十年代中期才真正制得了高质量、低成本,有广泛重要用途的氮化硅陶瓷制品。开发过程为何如此艰难,这是因为氮化硅粉体和氮化硅

2、陶瓷制品之间的性能和功能相差甚远,没有一个严格而精细的对氮化硅粉体再加工过程,是得不到具有优异性能的氮化硅陶瓷制品的。没有氮化硅陶瓷就没有氮化硅如今的重要地位。 Si3N4是以共价键为主的化合物,键强大,键的方向性强,结构中缺陷的形成和迁移需要的能量大,即缺陷扩散系数低(缺点),难以烧结,其中共价键Si-N成分为70 %,离子键为30 %,同时由于Si3N4本身结构不够致密,从而为提高性能需要添加少量氧化物烧结助剂,通过液相烧结使其致密化。Si3N4含有两种晶型,一种为-Si3N4,针状结晶体,呈白色或灰白色,另一种为-Si3N4,颜色较深,呈致密的颗粒状多面体或短棱柱体。两者均为六方晶系,都

3、是以SiN44-四面体共用顶角构成的三维空间网络。在高温状态下,相在热力学上更稳定,因此相会发生相变,转为相。从而高相含量Si3N4粉烧结时可得到细晶、长柱状-Si3N4晶粒,提高材料的断裂韧性。但陶瓷烧结时必须控制颗粒的异常生长,使得气孔、裂纹、位错缺陷出现,成为材料的断裂源。在工业性能上,Si3N4陶瓷材料表现出了较好的工艺性能。(1)机械强度高,硬度接近于刚玉,有自润滑性耐磨;(2)热稳定性高,热膨胀系数小,有良好的导热性能;(3)化学性能稳定,能经受强烈的辐射照射等等。晶体的常见参数如以以下图所示:Si3N4分子中Si原子和周围4个N 原子以共价键结合,形成Si-N4四面体结构单元,所

4、有四面体共享顶角构成三维空间网,形成Si3N4,有两种相结构,相和相如以以下图所示:相结构相结构其共价键长较短,成键电子数目多,原子间排列的方向性强,相邻原子间相互作用大。Si3N4存在两种由Si-N4四面体结构以不同的堆砌方式堆砌而成的三维网络晶形,一个是-Si3N4,另一个是-Si3N4。正是由于Si-N4四面体结构单元的存在,Si3N4具有较高的硬度。在-Si3N4的一个晶胞内有6个Si原子,8个N 原子。其中3个Si 原子和4 个N原子在一个平面上,另外3个Si原子和4个N原子在高一层平面上。第3层与第1层相对应,如此相应的在C轴方向按ABAB重复排列,-Si3N4的晶胞参数为a=0.

5、7606nm,c=0.2909nm。-Si3N4中第3层、第4层的Si原子在平面位置上分别与第1层、第2层的Si原子错了一个位置,形成4 层重复排列,即ABCDABCD方式排列。相对- Si3N4 而言,-Si3N4 晶胞参数变化不大,但在C 轴方向约扩大一倍(a=0.775nm,c=0.5618),其中还含有3%的氧原子以与许多硅空位,因此体系的稳定性较差,这使相结构的四面体晶形发生畸变,而相在热力学上更稳定。由于氧原子在相中形成Si-O-Si离子性较强的的键,这使 相中的Si-N4四面体易产生取向的改变和链的伸直,原子位置发生调整,使得 相在温度达到1300以上时转变到相,使其结构稳定。氮

6、化硅陶瓷的优异的性能对于现代技术经常遇到的高温、高速、强腐蚀介质的工作环境,具有特殊的使用价值。比较突出的性能有:(1)机械强度高,硬度接近于刚玉,有自润滑性,耐磨。室温抗弯强度可以高达980MPa以上,能与合金钢相比,而且强度可以一直维持到1200不下降。(2)热稳定性好,热膨胀系数小,有良好的导热性能,所以抗热震性很好,从室温到1000的热冲击不会开裂。(3)化学性能稳定,几乎可耐一切无机酸(HF除外)和浓度在30以下烧碱(NaOH)溶液的腐蚀,也能耐很多有机物质的侵蚀,对多种有色金属熔融体(特别是铝液)不润湿,能经受强烈的放射辐照。(4)密度低,比重小,仅是钢的2/5,电绝缘性好。2.重

7、要的应用氮化硅陶瓷的应用初期主要用在机械、冶金、化工、航空、半导体等工业上,作某些设备或产品的零部件,取得了很好的预期效果。近年来,随着制造工艺和测试分析技术的发展,氮化硅陶瓷制品的可靠性不断提高,因此应用面在不断扩大。特别值得赞赏的是,正在研制氮化硅陶瓷发动机,并且已经取得了很大的进展,这在科学技术上成为举世瞩目的大事。有关应用的主要内容有:(1)在冶金工业上制成坩埚、马弗炉炉膛、燃烧嘴、发热体夹具、铸模、铝液导管、热电偶测温保护套管、铝电解槽衬里等热工设备上的部件。(2)在机械工业上制成高速车刀、轴承、金属部件热处理的支承件、转子发动机刮片、燃气轮机的导向叶片和涡轮叶片等。(3)在化学工业

8、上制成球阀、泵体、密封环、过滤器、热交换器部件、固定化触媒载体、燃烧舟、蒸发皿等。(4)在半导体、航空、原子能等工业上用于制造开关电路基片、薄膜电容器、承受高温或温度剧变的电绝缘体、雷达天线罩、导弹尾喷管、原子反应堆中的支承件和隔离件、核裂变物质的载体等。(5)在医学工程上可以制成人工关节。(6)正在研制的氮化硅质的全陶瓷发动机代替同类型金属发动机。今后的发展方向是:充分发挥和利用Si3N4 本身所具有的优异特性;在Si3N4粉末烧结时,开发一些新的助熔剂,研究和控制现有助熔剂的最正确成分;改善制粉、成型和烧结工艺; 研制Si3N4 与SiC等材料的复合化,以便制取更多的高性能复合材料。Si3

9、N4 陶瓷等在汽车发动机上的应用,为新型高温结构材料的发展开创了新局面。利用Si3N4 重量轻和刚度大的特点,可用来制造滚珠轴承、它比金属轴承具有更高的精度,产生热量少,而且能在较高的温度和腐蚀性介质中操作。用Si3N4 陶瓷制造的蒸汽喷嘴具有耐磨、耐热等特性,用于650锅炉几个月后无明显损坏,而其它耐热耐蚀合金钢喷嘴在同样条件下只能使用1 - 2个月.由中科院#硅酸盐研究所与机电部#内燃机研究所共同研制的Si3N4电热塞,解决了柴油发动机冷态起动困难的问题,适用于直喷式或非直喷式柴油机。这种电热塞是当今最先进、最理想的柴油发动机点火装置。日本原子能研究所和三菱重工业公司研制成功了一种新的粗制

10、泵,泵壳内装有由11个Si3N4 陶瓷转盘组成的转子。由于该泵采用热膨胀系数很小的Si3N4 陶瓷转子和精密的空气轴承,从而无需润滑和冷却介质就能正常运转。如果将这种泵与超真空泵如涡轮分子泵结合起来,就能组成适合于核聚变反应堆或半导体处理设备使用的真空系统。随着Si3N4 粉末生产、成型、烧结与加工技术的改进,其性能和可靠性将不断提高,氮化硅陶瓷将获得更加广泛的应用。由于Si3N4 原料纯度的提高,Si3N4 粉末的成型技术和烧结技术的迅速发展,以与应用领域的不断扩大,Si3N4 正在作为工程结构陶瓷,在工业中占据越来越重要的地位。Si3N4 陶瓷具有优异的综合性能和丰富的资源,是一种理想的高

11、温结构材料,具有广阔的应用领域和市场,世界各国都在竞相研究和开发。陶瓷材料具有一般金属材料难以比拟的耐磨、耐蚀、耐高温、抗氧化性、抗热冲击与低比重等特点。可以承受金属或高分子材料难以胜任的严酷工作环境,具有广泛的应用前景。成为继金属材料、高分子材料之后支撑21世纪支柱产业的关键基础材料,并成为最为活跃的研究领域之一,当今世界各国都十分重视它的研究与发展,作为高温结构陶瓷家族中重要成员之一的Si3N4 陶瓷,较其它高温结构陶瓷如氧化物陶瓷、碳化物陶瓷等具有更为优异的机械性能、热学性能与化学稳定性. 因而被认为是高温结构陶瓷中最有应用潜力的材料。可以预言,随着陶瓷的基础研究和新技术开发的不断进步,

12、特别是复杂件和大型件制备技术的日臻完善,Si3N4 陶瓷材料作为性能优良的工程材料将得到更广泛的应用。氮化硅粉体的制造方法:用硅粉作原料,先用通常成型的方法做成所需的形状,在氮气中与1200的高温下进行初步氮化,使其中一部分硅粉与氮反应生成氮化硅,这时整个坯体已经具有一定的强度。然后在13501450的高温炉中进行第二次氮化,反应成氮化硅。用热压烧结法可制得达到理论密度99%的氮化硅。 制备工艺:由于制备工艺不同,各类型氮化硅陶瓷具有不同的微观结构(如孔隙度和孔隙形貌、晶粒形貌、晶间形貌以与晶间第二相含量等)。因而各项性能差别很大 。要得到性能优良的Si3N4 陶瓷材料,首先应制备高质量的Si

13、3N4 粉末. 用不同方法制备的Si3N4 粉质量不完全相同,这就导致了其在用途上的差异,许多陶瓷材料应用的失败,往往归咎于开发者不了解各种陶瓷粉末之间的差别,对其性质认识不足。一般来说,高质量的Si3N4 粉应具有相含量高,组成均匀,杂质少且在陶瓷中分布均匀,粒径小且粒度分布窄与分散性好等特性。好的Si3N4 粉中相至少应占90%,这是由于Si3N4 在烧结过程中,部分相会转变成相,而没有足够的相含量,就会降低陶瓷材料的强度。要制得高性能的氮化硅陶瓷制品,一般说来首先要有高质量的氮化硅粉料。理想的氮化硅粉料应是高纯、超细、等轴、球形、松散不团聚的一次粒子。实际上,目前要获得较为理想的Si3N

14、4粉料,还未根本解决。根据文献资料的报导,现在用以制造氮化硅粉料的方法已经较多,如:(1)硅粉直接氮化法3Si+2N2Si3N4(2)二氧化硅碳热还原法2SiO2+6C+2N2Si3N4+6CO(3)四氯化硅或硅烷与氨的高温气相合成法3SiCl4+4NH3Si3N4+12HCl3SiH4+4NH3Si3N4+12H2(4)亚氨基硅或氨基硅的热分解法3Si(NH)2Si3N4+2NH33Si(NH2)4Si3N4+8NH3其它还有激光法、等离子体法等等方法。以下主要介绍硅粉直接氮化合成法。一、生产工艺流程示意图:见图48。二、主要工艺条件(1)原料处理常用的市售工业硅块总会含有一些金属氧化物,如

15、钾、钠、铁、钙等的氧化物;工业氮气和氢气也总会含有少量的水、氧气等,这些都必须经过严格检测,并净化至允许的含量。对硅粉的要求粒度40m,对其中所含的金属杂质,一般可用酸洗的方法除去,对于球磨时带入的超硬合金杂质可用重力法或磁性法除去。硅粉表面的氧化膜可在氮化前通过还原活化法除去,即在低于烧结温度下,反复用低于常压的氢气还原和真空交换处理,待氧化膜除去后再进行氮化合成操作。氮气中若含水和氧,在硅氮合成反应时,氧和水蒸汽首先会使硅粉表面生成二氧化硅,影响氮化反应;而且在高温作用下,二氧化硅又可以与硅反应生成气态的一氧化硅或SiO2分解生成一氧化硅,而造成硅组分的损失:SiO2(固)+Si(固)2SiO(气)生成物氮化硅在高温下也会受氧气和水蒸汽的明显腐蚀。所以应尽可能地将其全部除去。气体净化系统示意图如下:其中氧气的脱除是通过灼热的铜屑生成氧化铜,由于同时通入了氢气,既可以保持铜屑的活性,又可以使氧最终转化成水而易于除去:(2)氮化合成反应氮化反应是在氮化炉中进行的,氮化炉内的温度由炉壁内的发热体和控温系统来调节。氮化反应开始进行非常缓慢,600900反应才明显,11001320反应剧烈进行。粒度符合要求的硅粉,也要经过大约10小时才可以氮化完全。硅粉粒度大于40m以上时,将

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 施工组织

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号