数字温度计设计

上传人:ni****g 文档编号:395952442 上传时间:2023-04-28 格式:DOC 页数:14 大小:136.50KB
返回 下载 相关 举报
数字温度计设计_第1页
第1页 / 共14页
数字温度计设计_第2页
第2页 / 共14页
数字温度计设计_第3页
第3页 / 共14页
数字温度计设计_第4页
第4页 / 共14页
数字温度计设计_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《数字温度计设计》由会员分享,可在线阅读,更多相关《数字温度计设计(14页珍藏版)》请在金锄头文库上搜索。

1、数字温度计摘 要:温度计在实际生产和人们的生活中均有广泛应用。该设计是数字温度计,一方面是对总体方案的选择和设计;然后通过控制LM35进行温度采集;将温度的变化转为电压的变化,另一方面设计电压电路,将变化的电压量通过放大系统转化为所需要的电压;再通过TC7107将模拟的电压转化为数字量后直接驱动数码管LED对实时温度进行动态显示。最后在Proteus仿真软件中构建了数字温度计仿真电路图,仿真成果表白:在温度变化时,可以通过电压的变化形式传递,最后通过3位十进制数显示出来。核心词:温度计 ;电路设计 ;仿真全屏阅读 关闭全屏阅读 目录1 设计任务与规定12 方案设计与论证13 单元电路的设计及仿

2、真2 3.1传感器2 3.2放大系统2 3.3 A/D转换器及数字显示44 总电路设计及其仿真调试过程6 4.1总电路设计6 4.2仿真成果及其分析75 结论与心得96 参照文献111 设计任务与规定 温度计是工农业生产及科学研究中最常用的测量仪表。本课题规定用中小规模集成芯片设计并制作一数字式温度计,即用数字显示被测温度。具体规定如下: (1)测量范畴0100度。 (2)测量精度0.1度。(3)3位LED数码管显示。掌握线性系统的根轨迹、时域和频域分析与计算措施; (2)掌握线性系统的超前、滞后、滞后-超前、一二阶最佳参数、PID等校正措施;(3)掌握MATLAB线性系统性能分析、校正设计与

3、检查的基本措施。2 方案设计与论证数字温度计的原理是:通过控制传感器进行温度采集,将温度的变化转化为电压的变化;然后设计电压电路,将变化的电压通过放大系统转化为需要的电压;再通过A/D转换器将模拟的电压转换为数字量后驱动数码管对实时温度进行动态显示。原理框图如图2-1所示:A/D转换 显示 放大系统 传感器 图2-1 数字温度计原理框图 由设计任务与规定可懂得,本设计实验重要分为四个部分,即传感器、放大系统、模数转换器以及显示部分。通过度析,传感器可以选择对温度比较敏感的器件,做好是在某参数与温度成线性关系,例如用温敏晶体管构成的集成温度传感器或热敏电阻等;放大系统可以由集成运放构成或反相比例

4、运算放大器;A/D转换器需要选择有LED驱动显示功能的,而可供选择的参照元件有ICL7107,ICL7106,MC14433等;显示部分用3位LED数码管显示。 方案一:用一种热敏电阻,通过热敏电阻把温度转化为电压,再得到每一度热敏电阻的电压变化值,用LM324运放做成乘法器,使电压乘以一种比例系数,使一度的变化得到一种整数变化的电压值,然后送入MC14433(A/D转换器)进行数模转换和数字显示。 方案二:用集成温度传感器把温度转化为电压,在把每一度的电压变化值通过LM324集成运放进行放大,使其放大的信号应能满足ICL7107数模转换的规定进行数字显示。由于MC14433模数转换器的显示部

5、分需要驱动器CD4511,基准电压又需要一种MC1403,也就是需要外接的电路和元件相对复杂和麻烦。而31/2位双积分型A/D转换器ICL7107是CMOS大规模集成电路芯片,其片内已经集成了模拟电路部分和数字电路部分,因此只要外接少量元件就成了模拟电路和数字电路部分,因此只要外接少量元件就可实现A/D转换和数码显示。因此选用方案二。设计草稿中的元器件大多是通过参照书和网上的资料定下来的,Multisim是最常用的仿真软件。初次选用Multisim进行仿真,可是在Multisim里始终找不到需要的仿真模型,最后选用Proteus进行仿真。到了Proteus仿真软件里,诸多元器件还是没有仿真模型

6、,只能折中选用仿真模型里有的。例如放大电路由LM324取代了LM741, A/D转换器由TC7107取代了ICL7107等等。重要参照元器件有:LM35,LM324,TC7107,电阻及电容若干。 3 单元电路的设计及仿真3.1温度传感器集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片上的集成化温度传感器,这种传感器最大长处是:直接给出正比于热力学温度的抱负的线性输出,此外体积小,成本低廉。因此,它是现代半导件温度传感器的重要发展方向之一。目前,已广泛应用于-55150温度范畴内的温度监测、控制和补偿的许多场合。由于本设计规定,测温范畴为0100,故此集成温度传感器满足规定。3.2放大系

7、统放大系统是把温度传感器输出的弱信号放大,将每一摄氏度相应的电压以整数输出,可以运用集成运放LM324构成两个反相比例放大电路,由于温度传感器输出的电压与温度的线性关系为10mv/,即温度每升高1电压升高10mv,因此可以使得电压通过反相比例运算电路放大10倍,即1相应电压为100mv。(1)反相运算器电路构造:图3-1 反相运算放大器的电路构造图 如图3-1所示,该图为反相运算放大器的电路构造图。图中的 R1:输入电阻 Rf:反馈电阻,引入电压并联负反馈 R2:平衡电阻,规定 R2=R1/Rf (2)电压放大倍数:V0和Vi成比例关系,比例系数为-Rf/Ri,负号表达V0和Vi反相比例系数的

8、数值可以是不小于、等于或不不小于1的任何值。通用型低功耗集成四运放LM324,内含4个独立的高增益、频率补偿的运算放大器,既可接单电源使用(330v),也可接双电源使用(1.515v),驱动功耗低,可与TTL逻辑电路相容。故选用LM324进行放大系统。 参数计算:U3:A(反相比例运算放大器)用电压放大倍数选择输入电阻和反馈电阻,选用输入电阻R4=1k,故反馈电阻R3=10.03k。平衡电阻R6=R4/R3=1.1k。放大后的电压为负电压,因此还需要级联一种U3:B(同比例反相器),选用输入电阻R8=10k,反馈电阻R9=10k,平衡电阻R7=R8/R9=5k,使它由负电压变为正电压。放大系统

9、电路,如下图所示:图3-2 两个反相器构成的放大系统如图3-2所示,给放大电路一种初始电压,例:V1=0.36v时,经一种10倍的反相运算放大器放大后,电压为-3.59v,经一种同比例反相运算放大器后,电压为+3.59v。仿真与理论存在微小误差(在可容许范畴类), 故放大系统部分设计成功。3.3 A/D转换器及数字显示TC7107是一块应用非常广泛的集成电路,它涉及31/2位数字A/D转换器可直接驱动LED数码管,内部设有参照电压独立模拟开关、逻辑控制、显示驱动、自动调零功能等。31/2位双积分型A/D转换器TC7107的引脚图和管教图以及功能简介31/2位双积分型A/D转换器TC7107是C

10、MOS大规模集成电路芯片,其片内已经集成了模拟电路部分和数字电路部分,因此只要外接少量元件就成了模拟电路和数字电路部分,因此只要外接少量元件就可实现A/D转换。TC7107内部电路具有模拟电路和数字电路两大部分。TC7107的管脚图,如下所示:图3-3 TC 7107如图3-3所示,简介TC7107各管脚的功能: 1端:V+为电源正极。 26端:V-为电源负极。 19端:AB4,千位数笔段驱动输出端,由于31/2位的计数满量程显示为“1999”,因此AB4输出端应接千位数显示屏显示“1”字的b和c笔段。 20端:POL,极性显示端(负显示),与千位数显示屏的g笔段相连接(或另行设立的负极性笔段

11、)。当输入信号的电压极性为负时,负号显示,如“-19.99”;当输入信号的电压极性为正时,极性负号不显示如“19.99”。 21端:POL,液晶显示屏背电极,与正负电源的公共地端相连接。 27端:VINT,积分器输出端,外接积分电容C(一般取C=0.22Fm)。 28端:VBUFF,缓冲放大器输出端,外接积分电阻R(其值在满刻度200mV时选用47K,而2V满刻度则使用470K)。 29端: CAZ,积分器和比较器的反相输入端,接自校零电容C(如果应用在200mV满刻度的场合是使用0.47F,而2V满刻度是0.047F。)。 30、31端:VIN-、VIN+,输入电压低、高品位。由于两端与高阻

12、抗CMOS运算放大器相连接,可以忽视输入信号的注入电流,输入信号应通过1000k电阻构成的滤波电路输入,以滤除干扰信号。 28端:个位数显示屏的笔段驱动输出端,各笔段输出端分别与个位数显示屏相应的笔段ag相连接。 914、25端:十位数显示屏的笔段驱动输出端,各笔段输出端分别与十位数显示屏相应的笔段ag相连接。 1518、2224端:百位数显示屏的笔段驱动输出端,各笔段输出端分别与百位数显示屏相应的笔段ag相连接。 32端:ACOM,模拟公共电压设立端,一般与输入信号的负端,负基准电压端相接。 33、34端:CREF-、CREF+,基准电容负压、正压端,它被充电的电压在反相积分时,成为基准电压

13、,一般取REFC=0.1F。 35、36端:VREF-、VREF+,外接基准电压低、高位端,由电源电压分压得到。 37端:TEST,数字地设立端及测试端,通过芯片内部的500电阻与GND相连。 38、39、40端:OSC31,产生时钟脉冲的振荡器的引出端,外接阻容元件。振荡器主振频率f与R、C的关系。 由于芯片TC7107采用双电源供电,能输出较大的电流,适合于驱动发光二极管(LED)数码显示屏,并且TC7107芯片内部涉及7段译码,可以用硬件译码的措施直接驱动发光二极管(LED)数码显示屏,因此显示方式采用共阳极数码管LED显示,由于TC7107没有专门的小数点驱动信号,使用时可将共阳级数码

14、管的公共阳极接V+,小数点接GND时点亮,接V+时熄灭。数码显示部分由3个数码管显示数据。4 总电路设计及其仿真调试过程4.1总电路设计根据设计任务知,本系统由传感器、放大系统、A/D转换器和数码显示四部分构成,按照规定将四部分在Proteus仿真软件上级连起来绘出总的电路原理图。总电路原理图,如下图4-1所示:图4-1 总电路原理图 特别注意: 1) Proteus里的7107有点问题,30、32这两个引脚不能与电源共地。意思是说电压输入电路自己构成回路即可。不可添加电源地的符号。(注意理解地的含义) 2)参照电压部分通过滑动变阻器调制到10v。3)电源部分注意标号,例如:+15和+15v(v不辨别大小写)不同,应为后者。4.2仿真成果及其分析变化温度传感器的温度;观测输出变化的温度信号电压(即放大电路输出电压);检查控制与否符合规定;LED显示与否对的。任选三个温度值(例:0、36、100)对总电路进行调试分析。1.温度计为0,如下图所示:图4-2 温度计为0时如图4-2所示,当温度传感器温度为0时,放大输出电压为0v,数码显示部分为0,故该数字温度计电路设计成功。2.温度计为36,如下图所示:图4-3 温度为36时如图4-3所示,当温度传感器温度为36时,放大输出电压为3.61v,数码显示部分为35.9,仿真与理

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 建筑/环境 > 综合/其它

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号