文档详情

光电传感器实验

ni****g
实名认证
店铺
DOCX
311.98KB
约14页
文档ID:391330207
光电传感器实验_第1页
1/14

DH-SJ3光电传感器物理设计性实验装置(实验指导书)实验讲义请勿带走杭州大华科教仪器研究所杭州大华仪器制造有限公司DH-SJ3 光电传感器物理设计性实验装置光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化光电效应通常分为外光电效应和内光电效应两大类外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都是内光电效应类传感器当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的 APD 雪崩式光电二极管,半导体光敏传感器、光电闸流晶体管、光导摄像管、 CCD 图像传感器等,为光电传感器的应用开创了新的一页。

本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理一、实验目的1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线3、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线4、了解光敏三极管的基本特性,测出它的伏安特性和光照特性曲线5、了解光纤传感器基本特性和光纤通讯基本原理二、光敏传感器的基本特性及实验原理1、伏安特性光敏传感器在一定的入射光强照度下,光敏元件的电流 I 与所加电压 U 之间的关系称为光敏器件的伏安特性改变照度则可以得到一组伏安特性曲线,它是传感器应用设计时选择电参数的重要依据某种光敏电阻、硅光电池、光敏二极管、光敏三极管的伏安特性曲线如图 1、图 2、图 3、图 4 所示图 1 光敏电阻的伏安特性曲线 图 2 硅光电池的伏安特性曲线图 3 光敏二极管的伏安特性曲线 图 4 光敏三极管的伏安特性曲线从上述四种光敏器件的伏安特性可以看出,光敏电阻类似一个纯电阻,其伏安特性线性良好,在一定照度下,电压越大光电流越大,但必须考虑光敏电阻的最大耗散功率,超过额定电压和最大电流都可能导致光敏电阻的永久性损坏。

光敏二极管的伏安特性和光敏三极管的伏安特性类似,但光敏三极管的光电流比同类型的光敏二极管大好几十倍,零偏压时,光敏二极管有光电流输出,而光敏三极管则无光电流输出在一定光照度下硅光电池的伏安特性呈非线性2、光照特性光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一 某种光敏电阻、 硅光电池、光敏二极管、光敏三极管的光照特性如图 5、图 6、图 7、图 8 所示图 5 光敏电阻的光照特性曲线 图 6 硅光电池的光照特性曲线图 7 光敏二极管的光照特性曲线 图 8 光敏三极管的光照特性曲线从上述四种光敏器件的光照特性可以看出光敏电阻、光敏三极管的光照特性呈非线性,一般不适合作线性检测元件,硅光电池的开路电压也呈非线性且有饱和现象,但硅光电池的短路电流呈良好的线性, 故以硅光电池作测量元件应用时,应该利用短路电流与光照度的良好线性关系所谓短路电流是指外接负载电阻远小于硅光电池内阻时的电流, 一般负载在 20Ω以下时, 其短路电流与光照度呈良好的线性,且负载越小,线性关系越好、线性范围越宽。

光敏二极管的光照特性亦呈良好线性,而光敏三极管在大电流时有饱和现象,故一般在作线性检测元件时,可选择光敏二极管而不能用光敏三极管三、实验仪器DH-SJ3 光电传感器设计实验仪由下列部分组成:光敏电阻板、硅光电池板、光敏二极管板、光敏三极管板、红光发射管 LED3、接受管(包括 PHD101 光电二极管和 PHT 101光电三极管)、Ф 2.2 和Ф 2 光纤、光纤座、测试架、 DH - VC3 直流恒压源、九孔板、万用表、电阻元件盒以及转接盒等组成实验时,测试架中的光源电源插孔以及传感器插孔均通过转接盒与九孔板相连,其它连接都在九孔板中实现;测试架中可以更换传感器板图 9 DH - VC3 直流恒压源面板图图 10-1 转接盒 图 10-2 发射管 图 10-3 接收管 图 10-4 接收管图 10- 5 电阻盒 1k Ω 图 10- 6 电阻盒 1k Ω 图 10- 7 电阻盒 470 Ω 图 10- 8 电阻盒 10Ω图 10- 9 电阻盒 4.7K Ω 图 10- 10 电阻盒 47Ω 图 10- 11 电容盒 1uF图 10- 12 喇叭盒 图 10- 13 NPN 三极管盒图 10- 14 Ф 2.2 光纤座 图 10- 15 Ф 2 光纤座图 10- 16 Ф2.2 光纤 图 10- 17 Ф2 光纤座图 10- 18 光敏电阻板 图 10- 19 硅光电池板图 10- 20 光敏二极管板 图 10- 21 光敏三极管板图 10- 22 九孔板图 10 实验元件图图 11 测试架四、实验内容实验中对应的光照强度均为相对光强,可以通过改变点光源电压或改变点光源到光敏电阻之间的距离来调节相对光强。

光源电压的调节范围在 0~12V,光源和传感器之间的距离调节有效范围为 : 0~200mm,实际距离为 50~ 250mm1、光敏电阻特性实验1.1、光敏电阻伏安特性测试实验(1)按原理图 12 接好实验线路,将光源用的标准钨丝灯和光敏电阻板置测试架中,电阻盒以及转接盒插在九孔板中,电源由 DH - VC3 直流恒压源提供2)通过改变光源电压或调节光源到光敏电阻之间的距离以提供一定的光强,每次在一定的光照条件下,测出加在光敏电阻上电压 U 为+2V 、+ 4V 、+6V、+8V、 +10V 时 5 个光电流数据,即 I phU R, 同时算出此时光敏电阻的阻值1.00KRpU U R 以后逐步调大相对光强重复上述实验,进行 5~ 6 次不同光强实验I ph数据测量3)根据实验数据画出光敏电阻的一组伏安特性曲线图 12 光敏电阻伏安特性测试电路1.2、光敏电阻的光照特性测试实验(1)按原理图 12 接好实验线路,将光源用标准钨丝灯和检测用光敏电阻置测试架中,电阻盒以及转接盒插在九孔板中,电源由DH- VC3 直流恒压源提供2)从 U=0 开始到 U =12V ,每次在一定的外加电压下测出光敏电阻在相对光照强度从“弱光”到逐步增强的光电流数据,即:I phU R,同时算出此1.00K时光敏电阻的阻值,即: RpU UR。

I ph(3)根据实验数据画出光敏电阻的一组光照特性曲线2、硅光电池的特性实验2.1、硅光电池的伏安特性实验(1)将硅光电池板置测试架中、电阻盒置于九孔插板中,电源由 DH - VC3直流恒压源提供, RX 接到暗箱边的插孔中以便于同外部电阻箱相连按图13 连接好实验线路,开关 K 指向“ 1”时,电压表测量开路电压Uoc,开关指向“ ”时,RX 短路,电压表测量2R电压UR光源用钨丝灯, 光源电压 ~(可调),012V串接好电阻箱( 0~10000Ω 可调)2)先将可调光源调至相对光强为“弱光”位置,每次在一定的照度下,测出硅光电池的光电流 I ph 与光电压USC 在不同的负载条件下的关系 ( ~Ω)010000数据,其中 I phU R 10.00为取样电阻 R),以后逐步调大相对光强(5~10.006 次),重复上述实验3)根据实验数据画出硅光电池的一组伏安特性曲线图 13 硅光电池特性测试电路2.2、硅光电池的光照度特性实验(1)实验线路见图 13,电阻箱调到 0Ω2)先将可调光源调至相对光强为“弱光”位置,每次在一定的照度下,测出硅光电池的开路电压Uoc 和短路电流 IS,其中短路电流为 I SU R(取样10.00电阻 R 为 10.00 Ω),以后逐步调大相对光强( 5~ 6 次),重复上述实验。

3)根据实验数据画出硅光电池的光照特性曲线3、光敏二极管的特性实验3.1、光敏二极管伏安特性实验图 14 光敏二极管特性测试电路(1)按原理图 。

下载提示
相似文档
正为您匹配相似的精品文档