(江苏专用)高考数学 考前三个月 必考题型过关练 第13练 以函数为背景的创新题型 理

上传人:不*** 文档编号:378955336 上传时间:2024-02-05 格式:DOC 页数:8 大小:205KB
返回 下载 相关 举报
(江苏专用)高考数学 考前三个月 必考题型过关练 第13练 以函数为背景的创新题型 理_第1页
第1页 / 共8页
(江苏专用)高考数学 考前三个月 必考题型过关练 第13练 以函数为背景的创新题型 理_第2页
第2页 / 共8页
(江苏专用)高考数学 考前三个月 必考题型过关练 第13练 以函数为背景的创新题型 理_第3页
第3页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《(江苏专用)高考数学 考前三个月 必考题型过关练 第13练 以函数为背景的创新题型 理》由会员分享,可在线阅读,更多相关《(江苏专用)高考数学 考前三个月 必考题型过关练 第13练 以函数为背景的创新题型 理(8页珍藏版)》请在金锄头文库上搜索。

1、第13练以函数为背景的创新题型题型一新定义函数名称的问题例1定义在(,0)(0,)上的函数f(x),如果对于任意给定的等比数列an,f(an)仍是等比数列,则称f(x)为“保等比数列函数”现有定义在(,0)(0,)上的如下函数:f(x)x2;f(x)2x;f(x);f(x)ln |x|.则其中是“保等比数列函数”的f(x)的序号为_破题切入点准确把握严格按照“保等比数列函数”的概念逐个验证答案解析等比数列性质,anan2a,f(an)f(an2)aa(a)2f2(an1);f(an)f(an2)22 2f2(an1);f(an)f(an2)2f2(an1);f(an)f(an2)ln |an|

2、ln |an2|(ln |an1|)2f2(an1)题型二新定义函数的性质或部分性质问题例2设函数f(x)的定义域为D,如果对于任意的x1D,存在唯一的x2D,使得C成立(其中C为常数),则称函数yf(x)在D上的均值为C.现在给出下列4个函数:yx3;y4sin x;ylg x;y2x.则在其定义域上的均值为2的所有函数是_破题切入点如何求均值?按定义,能否使均值为2?答案解析经验证,是符合题意的;对于,x2不唯一;对于,若满足题中的定义,则f(x1)f(x2)4,f(x2)4f(x1),由x1的任意性,知f(x2)需满足能取到负值,而这是不可能的总结提高有关以函数为背景的创新题型,一般是先

3、叙述或新规定一些条件,若满足这些条件则该函数为该类函数或具有该性质,解决办法是根据我们所学过的其他函数的有关意义和性质来逐个验证加以解决,注意严格准确把握新定义1设D(x,y)|(xy)(xy)0,记“平面区域D夹在直线y1与yt(t1,1)之间的部分的面积”为S,则函数Sf(t)的图象的大致形状为_答案解析如图,平面区域D为阴影部分,当t1时,S0,排除;当t时,SSmax,排除.2设函数f(x)与g(x)是定义在同一区间a,b上的两个函数,若对任意的xa,b,都有|f(x)g(x)|k(k0),则称f(x)与g(x)在a,b上是“k度和谐函数”,a,b称为“k度密切区间”设函数f(x)ln

4、 x与g(x)在,e上是“e度和谐函数”,则m的取值范围是_答案1,e1解析设h(x)f(x)g(x)ln xmln x,h(x),故当x,1)时,h(x)1,所以h()h(e),故函数h(x)的最大值为h()me1.故函数h(x)在,e上的值域为m1,me1由题意,得|h(x)|e,即eh(x)e,所以解得1m1e.3(2014苏州模拟)对于函数f(x),若任意的a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”已知函数f(x)是“可构造三角形函数”,则实数t的取值范围是_答案,2解析因为对任意的实数x1,x2,x3R,都存在以f(x1),f(

5、x2),f(x3)为三边长的三角形,故f(x1)f(x2)f(x3)对任意的x1,x2,x3R恒成立由f(x)1,设ex1m(m1),则原函数可化为f(m)1(m1),当t1时,函数f(m)在(1,)上单调递减,所以f(m)(1,t),此时2f(x1)f(x2)2t,1f(x3)f(x3)对任意的x1,x2,x3R恒成立,需t2,所以1t2;当t1时,f(x)1,显然满足题意;当t1时,函数f(m)在(1,)上单调递增,所以y(t,1),此时2tf(x1)f(x2)2,tf(x3)f(x3)对任意的x1,x2,x3R恒成立,需满足2t1,所以t0,即函数f(x)在(0,)上单调递增由f(2)l

6、n 210,知x0(2,e),x02.6(2014辽宁改编)已知定义在0,1上的函数f(x)满足:f(0)f(1)0;对所有x,y0,1,且xy,有|f(x)f(y)|xy|.若对所有x,y0,1,|f(x)f(y)|k恒成立,则k的最小值为_答案解析取y0,则|f(x)f(0)|x0|,即|f(x)|x,取y1,则|f(x)f(1)|x1|,即|f(x)|(1x)|f(x)|f(x)|xx,|f(x)|.不妨取f(x)0,则0f(x),0f(y),|f(x)f(y)|0,要使|f(x)f(y)|k恒成立,只需k.k的最小值为.7设集合M(x,y)|yf(x),若对于任意(x1,y1)M,存在

7、(x2,y2)M,使得x1x2y1y20成立,则称集合M为“垂直双点集”给出下列四个集合:M(x,y)|y;M(x,y)|ysin x1;M(x,y)|ylog2x;M(x,y)|yex2其中是“垂直双点集”的序号是_答案解析对于,y是以x轴,y轴为渐近线的双曲线,渐近线的夹角为90,在同一支上,任意(x1,y1)M,不存在(x2,y2)M,满足“垂直双点集”的定义;对任意(x1,y1)M,在另一支上也不存在(x2,y2)M,使得x1x2y1y20成立,所以不满足“垂直双点集”的定义,不是“垂直双点集”对于,M(x,y)|ysin x1,如图1所示,在曲线ysin x1上,对任意的点B(x1,

8、y1)M,总存在点C(x2,y2)M,使得OBOC,即x1x2y1y20成立,故M(x,y)|ysin x1是“垂直双点集”对于,M(x,y)|ylog2x,如图2所示,在曲线ylog2x上,取点(1,0),则曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直双点集”对于,M(x,y)|yex2,如图3所示,在曲线yex2上,对任意(x1,y1)M,总存在(x2,y2)M,使得x1x2y1y20成立,例如取(0,1),(ln 2,0),满足“垂直双点集”的定义8如图展示了由区间(0,4)到实数集R的一个映射过程:区间(0,4)中的实数m对应数轴上的点M(如图1),将线段AB围成

9、一个正方形,使两端点A,B恰好重合(如图2),再将这个正方形放在平面直角坐标系中,使其中两个顶点在y轴上(如图3),点A的坐标为(0,4),若图3中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)n.现给出以下命题:f(2)0;f(x)的图象关于点(2,0)对称;f(x)在区间(3,4)上为常数函数;f(x)为偶函数其中真命题为_(写出所有真命题的序号)答案解析如图所示由定义可知2的象为0.即f(2)0;由图象可知关于点(2,0)对称的两点的象互为相反数,即其图象关于点(2,0)对称;结合图形可知m(3,4)时其象为定值,即函数在此区间上为常数函数;因为函数的定义域为0,4,不关

10、于原点对称,故函数不是偶函数综上可知命题是正确的9对于函数f(x),若存在区间Ma,b(其中ag(x)恒成立,则实数b的取值范围是_答案(2,)解析由已知得3xb,所以h(x)6x2b.h(x)g(x)恒成立,即6x2b,3xb恒成立在同一坐标系内,画出直线y3xb及半圆y(如图所示),可得2,即b2,故答案为(2,)11若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出四个函数:f1(x)2log2 x,f2(x)log2 (x2),f3(x)(log2 x)2,f4(x)log2(2x)则“同形”函数是_答案f2(x)与f4(x)解析f4(x)log2(2x)1log2x,将其向下平移1个单位得到f(x)log2x,再向左平移2个单位,即得到f2(x)log2(x2)的图象故根据新定义得,f2(x)log2 (x2)与f4(x)log2 (2x)为“同形”函数12已知集合A1,2,3,2n(nN*)对于A的一个子集S,若S满足性质P:“存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1s2|m”,则称S为理想集对于下列命题:当n10时,集合B

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 高考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号