(江苏专用)高考数学二轮复习 专题检测36 直线与圆锥曲线问题

上传人:不*** 文档编号:378955051 上传时间:2024-02-05 格式:DOC 页数:6 大小:133KB
返回 下载 相关 举报
(江苏专用)高考数学二轮复习 专题检测36 直线与圆锥曲线问题_第1页
第1页 / 共6页
(江苏专用)高考数学二轮复习 专题检测36 直线与圆锥曲线问题_第2页
第2页 / 共6页
(江苏专用)高考数学二轮复习 专题检测36 直线与圆锥曲线问题_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《(江苏专用)高考数学二轮复习 专题检测36 直线与圆锥曲线问题》由会员分享,可在线阅读,更多相关《(江苏专用)高考数学二轮复习 专题检测36 直线与圆锥曲线问题(6页珍藏版)》请在金锄头文库上搜索。

1、36直线与圆锥曲线问题1已知圆C:(x1)2y28,定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足2,0,点N的轨迹为曲线E.(1)求曲线E的方程;(2)若直线ykx与(1)中所求点N的轨迹E交于不同的两点F,H,O是坐标原点,且,求k2的取值范围解(1)如图所示,连结NA.由2,0,可知NP所在直线为线段AM的垂直平分线,所以NANM,所以NCNANCNM22CA,所以动点N的轨迹是以C(1,0),A(1,0)为焦点的椭圆,且长轴长为2a2,焦距2c2,即a,c1,b1.故曲线E的方程为y21.(2)设F(x1,y1),H(x2,y2)由消去y,得(2k21)x24kx

2、2k20,8k20,由根与系数的关系,得x1x2,x1x2,所以x1x2y1y2x1x2(kx1)(kx2)(k21)x1x2k(x1x2)k21k21.由,得,解得k21.2(2013广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:xy20的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求AFBF的最小值解(1)依题意知,c0,解得c1.所以抛物线C的方程为x24y.(2)由yx2得yx,设A(x1,y1),B(x2,y

3、2),则切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为yy1(xx1),即yxy1,即x1x2y2y10.同理可得切线PB的方程为x2x2y2y20,又点P(x0,y0)在切线PA和PB上,所以x1x02y02y10,x2x02y02y20,所以(x1,y1),(x2,y2)为方程x0x2y02y0 的两组解,所以直线AB的方程为x0x2y2y00.(3)由抛物线定义知AFy11,BFy21,所以AFBF(y11)(y21)y1y2(y1y2)1,联立方程消去x整理得y2(2y0x)yy0,y1y2x2y0,y1y2y,AFBFy1y2(y1y2)1yx2y01y(y02)22y0

4、12y2y0522,当y0时,AFBF取得最小值,且最小值为.3(2013浙江)如图,点P(0,1)是椭圆C1:1(ab0)的一个顶点,C1的长轴是圆C2:x2y24的直径l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求ABD面积取最大值时直线l1的方程解(1)由题意得所以椭圆C1的方程为y21.(2)设A(x1,y1),B(x2,y2),D(x0,y0)由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为ykx1.又圆C2:x2y24,故点O到直线l1的距离d,所以AB22 .又l2l1,故直线l2的方程

5、为xkyk0.由消去y,整理得(4k2)x28kx0,故x0.所以PD.设ABD的面积为S,则SABPD,所以S,当且仅当k时取等号所以所求直线l1的方程为yx1.4已知双曲线E:1(a0,b0)的焦距为4,以原点为圆心,实半轴长为半径的圆和直线xy0相切(1)求双曲线E的方程;(2)已知点F为双曲线E的左焦点,试问在x轴上是否存在一定点M,过点M任意作一条直线交双曲线E于P,Q两点(P在Q点左侧),使为定值?若存在,求出此定值和所有的定点M的坐标;若不存在,请说明理由解(1)由题意知a,a.又2c4,c2,b1.双曲线E的方程为y21.(2)当直线为y0时,则P(,0),Q(,0),F(2,

6、0),(2,0)(2,0)1.当直线不为y0时,可设l:xtym(t)代入E:y21,整理得(t23)y22mtym230(t)(*)由0得m2t23.设方程(*)的两个根为y1,y2,满足y1y2,y1y2,(ty1m2,y1)(ty2m2,y2)(t21)y1y2t(m2)(y1y2)(m2)2.当且仅当2m212m153时,为定值,解得m13,m23(舍去)综上,过定点M(3,0)任意作一条直线交双曲线E于P,Q两点,使1为定值5已知过抛物线y22px(p0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x10,y00),则切线斜率为,切线方程为yy0(xx0),即

7、x0xy0y4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S.由xy42x0y0知当且仅当x0y0时,x0y0有最大值,即S有最小值,因此点P的坐标为(,)由题意知解得故C1的方程为x21.(2)由(1)知C2的焦点坐标为(,0),(,0),由此设C2的方程为1,其中b10.由P(,)在C2上,得1,解得b3,因此C2的方程为1.显然,l不是直线y0.设l的方程为xmy,点A(x1,y1),B(x2,y2),由得(m22)y22my30,又设y1,y2是方程的根,因此由x1my1,x2my2,得因为(x1,y1),(x2,y2),由题意知0,所以x1x2(x1x2)y1y2(y1y2)40,将代入整理得2m22m4110,解得m1或m1.因此直线l的方程为x(1)y0或x(1)y0.

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 高考

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号