几何最值之瓜豆原理

上传人:如** 文档编号:364524594 上传时间:2023-10-17 格式:DOCX 页数:5 大小:72.45KB
返回 下载 相关 举报
几何最值之瓜豆原理_第1页
第1页 / 共5页
几何最值之瓜豆原理_第2页
第2页 / 共5页
几何最值之瓜豆原理_第3页
第3页 / 共5页
几何最值之瓜豆原理_第4页
第4页 / 共5页
几何最值之瓜豆原理_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《几何最值之瓜豆原理》由会员分享,可在线阅读,更多相关《几何最值之瓜豆原理(5页珍藏版)》请在金锄头文库上搜索。

1、几何最值之瓜豆原理初中数学有一类动态问题叫做主从联动,这类问题应该说是非常出题,好多优秀老师都在研究它,原因是它在很多名校模考的时候经常出现,有的老师叫他瓜豆原理,个人理解可能是种瓜得瓜种豆得豆的意思吧,主动点运动的轨迹是什么,则从动点的轨迹就是什么。也有的老师叫他旋转相似,或者手拉手。我感觉这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题,但在解答问题时,要符合解不超纲的原则,所以最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型,下面整理一些题目来集中训练一下这类题目,希望对你能有所帮助.涉及的知识和方法

2、:一、知识:相似; 三角形的两边之和大于第三边;点到直线之间的距离垂线段最短; 点到圆上点共线有最值。二、方法:第一步:找主动点的轨迹 ; 第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点; 第四步:通过相似确定从动点的轨迹;第五步:根据轨迹确定点线、点圆最值。在此类题目中,题目或许先描述的是主动点P,但最终问题问的可以是另一点Q(从动点),根据P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值。一、轨迹之圆篇例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点考虑:当点P在圆O上运动时,Q点轨迹是?分析观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O

3、有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有AMQAOP,QM:PO=AQ:AP=1:2结论:确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AOQ点轨迹相当于是P点轨迹成比例缩放根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQAP且AQ=AP考虑:当点P在圆O上运动时,Q点轨迹是? 分析Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90得AQ,故Q点

4、轨迹与P点轨迹都是圆接下来确定圆心与半径考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO即可确定圆M位置,任意时刻均有APOAQM例3:如图,APQ是直角三角形,PAQ=90且AP=2AQ,当P在圆O运动时,Q点轨迹是?分析考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1即可确定圆M位置,任意时刻均有APOAQM,且相似比为2模型总结为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量

5、(PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值)结论(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:PAQ=OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩古人云:种瓜得瓜,种豆得豆“种”圆得圆,“种”线得线,谓之“瓜豆原理”思考1:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边APQ考虑:当点P在圆O上运动时,Q点轨迹是?分析Q点满足(1)PAQ=60;(2)AP=AQ,故Q点轨迹是个圆:考虑PAQ=60,可得Q点轨

6、迹圆圆心M满足MAO=60;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO即可确定圆M位置,任意时刻均有APOAQM小结可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系思考2如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角APQ考虑:当点P在圆O上运动时,如何作出Q点轨迹?分析Q点满足(1)PAQ=45;(2)AP:AQ=:1,故Q点轨迹是个圆连接AO,构造OAM=45且AO:AM=:1M点即为Q点轨迹圆圆心,此时任意时刻均有AOPAMQ即可确定点Q的轨迹圆二、轨迹之线段篇引例:如图,P是直线B

7、C上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?分析当P点轨迹是直线时,Q点轨迹也是一条直线可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线引例如图,APQ是等腰直角三角形,PAQ=90且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?分析当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段模型总结必要条件:主动点、从动点与定点连线的夹角是定量(PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值)结论:P、Q两点轨迹所在直线的夹角等于PAQ(当PAQ90时,PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由ABCAMN,可得AP:AQ=BC:MN)

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 初中教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号