初中几何常见辅助线作法50种 (3)

上传人:如** 文档编号:364524135 上传时间:2023-10-17 格式:DOCX 页数:26 大小:672.06KB
返回 下载 相关 举报
初中几何常见辅助线作法50种 (3)_第1页
第1页 / 共26页
初中几何常见辅助线作法50种 (3)_第2页
第2页 / 共26页
初中几何常见辅助线作法50种 (3)_第3页
第3页 / 共26页
初中几何常见辅助线作法50种 (3)_第4页
第4页 / 共26页
初中几何常见辅助线作法50种 (3)_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《初中几何常见辅助线作法50种 (3)》由会员分享,可在线阅读,更多相关《初中几何常见辅助线作法50种 (3)(26页珍藏版)》请在金锄头文库上搜索。

1、初中常见辅助线作法任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。三角形部分1在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.例:如图,已知D、E为ABC内两点,求证:ABACBDDECE. 证法(一):将DE向两边延长,分别交AB、AC于M、N 在AMN中, AM ANMDDENE 在BDM中,MBMDBD 在CEN中,CNNECE 得AMANMB

2、MDCNNEMDDENEBDCEABACBDDECE证法(二)延长BD交AC于F,延长CE交BF于G,在ABF和GFC和GDE中有,ABAFBDDGGFGFFCGECEDGGEDE有ABAFGFFCDGGEBDDGGFGECEDEABACBDDECE注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.练习:已知:如图P为ABC内任一点, 求证:(ABBCAC)PAPBPCABBCAC2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角

3、形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D为ABC内任一点,求证:BDCBAC证法(一):延长BD交AC于E,BDC是EDC 的外角,BDCDEC同理:DECBACBDCBAC证法(二):连结AD,并延长交BC于FBDF是ABD的外角,BDFBAD同理CDFCADBDFCDFBADCAD即:BDCBAC3.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD为ABC的中线且1 = 2,3 = 4,求证:BECFEF证明:在DA上截取DN = DB,连结NE、NF,则DN = DC 在BDE和NDE中,DN = DB1 = 2ED = EDBDE

4、NDEBE = NE同理可证:CF = NF在EFN中,ENFNEFBECFEF4. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD为ABC的中线,且1 = 2,3 = 4,求证:BECFEF证明:延长ED到M,使DM = DE,连结CM、FMBDE和CDM中, BD = CD1 = 5ED = MDBDECDMCM = BE又1 = 2,3 = 4 123 4 = 180o3 2 = 90o即EDF = 90oFDM = EDF = 90oEDF和MDF中ED = MDFDM = EDFDF = DFEDFMDFEF = MF在CMF中,CFCM MFBEC

5、FEF(此题也可加倍FD,证法同上5. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD为ABC的中线,求证:ABAC2AD证明:延长AD至E,使DE = AD,连结BEAD为ABC的中线BD = CD在ACD和EBD中BD = CD 1 = 2AD = EDACDEBDABE中有ABBEAEABAC2AD6.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:abab = cab = cd例:已知,如图,在ABC中,ABAC,

6、1 = 2,P为AD上任一点,求证:ABACPBPC证明:截长法:在AB上截取AN = AC,连结PN在APN和APC中,AN = AC1 = 2AP = APAPNAPCPC = PNBPN中有PBPCBNPBPCABAC补短法:延长AC至M,使AM = AB,连结PM在ABP和AMP中AB = AM 1 = 2AP = APABPAMPPB = PM又在PCM中有CM PMPCABACPBPC练习:1.已知,在ABC中,B = 60o,AD、CE是ABC的角平分线,并且它们交于点O求证:AC = AECD2.已知,如图,ABCD1 = 2 ,3 = 4. 求证:BC = ABCD 7.条件

7、不足时延长已知边构造三角形.例:已知AC = BD,ADAC于A,BCBD于B求证:AD = BC证明:分别延长DA、CB交于点EADAC BCBDCAE = DBE = 90o在DBE和CAE中DBE =CAEBD = ACE =EDBECAEED = EC,EB = EAEDEA = EC EBAD = BC8.连接四边形的对角线,把四边形问题转化成三角形来解决问题.例:已知,如图,ABCD,ADBC 求证:AB = CD 证明:连结AC(或BD)ABCD,ADBC1 = 2 在ABC和CDA中,1 = 2 AC = CA3 = 4 ABCCDAAB = CD练习:已知,如图,AB = D

8、C,AD = BC,DE = BF,求证:BE = DF9.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“垂直加平分出等腰三角形”.例:已知,如图,在RtABC中,AB = AC,BAC = 90o,1 = 2 ,CEBD的延长线于E求证:BD = 2CE证明:分别延长BA、CE交于FBECFBEF =BEC = 90o在BEF和BEC中1 = 2 BE = BEBEF =BECBEFBECCE = FE =CFBAC = 90o , BECFBAC = CAF = 90o 1BDA = 90o1BFC = 90oBDA = BFC在ABD和ACF中BAC = CAFBDA = BF

9、CAB = ACABDACFBD = CFBD = 2CE练习:已知,如图,ACB = 3B,1 =2,CDAD于D,求证:ABAC = 2CD10.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形.例:已知,如图,AC、BD相交于O,且AB = DC,AC = BD,求证:A = D证明:(连结BC,过程略)11.当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件.例:已知,如图,AB = DC,A = D 求证:ABC = DCB 证明:分别取AD、BC中点N、M,连结NB、NM、NC(过程略)12.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分

10、线上的点到角两边距离相等证题.例:已知,如图,1 = 2 ,P为BN上一点,且PDBC于D,ABBC = 2BD,求证:BAPBCP = 180o证明:过P作PEBA于EPDBC,1 = 2 PE = PD在RtBPE和RtBPD中BP = BPPE = PDRtBPERtBPDBE = BDABBC = 2BD,BC = CDBD,AB = BEAEAE = CDPEBE,PDBCPEB =PDC = 90o在PEA和PDC中PE = PDPEB =PDCAE =CDPEAPDCPCB = EAPBAPEAP = 180oBAPBCP = 180o练习:1.已知,如图,PA、PC分别是ABC

11、外角MAC与NCA的平分线,它们交于P,PDBM于M,PFBN于F,求证:BP为MBN的平分线2. 已知,如图,在ABC中,ABC =100o,ACB = 20o,CE是ACB的平分线,D是AC上一点,若CBD = 20o,求CED的度数。13.有等腰三角形时常用的辅助线作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BDAC于D,求证:BAC = 2DBC证明:(方法一)作BAC的平分线AE,交BC于E,则1 = 2 = BAC又AB = ACAEBC2ACB = 90oBDACDBCACB = 90o2 = DBCBAC = 2DBC(方法二)过A作AEBC于E(过程略)

12、(方法三)取BC中点E,连结AE(过程略)有底边中点时,常作底边中线例:已知,如图,ABC中,AB = AC,D为BC中点,DEAB于E,DFAC于F,求证:DE = DF证明:连结AD.D为BC中点,BD = CD又AB =ACAD平分BACDEAB,DFACDE = DF将腰延长一倍,构造直角三角形解题例:已知,如图,ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EFBC证明:延长BE到N,使AN = AB,连结CN,则AB = AN = ACB = ACB, ACN = ANCBACBACNANC = 180o2BCA2ACN = 180oBCAACN = 90o即BCN = 90oNCBCAE = AFAEF = AFE又BAC = AEF AFEBAC = ACN ANCBAC =2AEF = 2ANCAEF = ANCEFNCEFBC常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF证明:(证法

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 中学教育 > 初中教育

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号