《浙江省温州市2018年中考数学试卷【含答案】》由会员分享,可在线阅读,更多相关《浙江省温州市2018年中考数学试卷【含答案】(11页珍藏版)》请在金锄头文库上搜索。
1、浙江省温州市2018年中考数学试卷一、选择题1给出四个实数 ,2,0,-1,其中负数是()AB2C0D-12移动台阶如图所示,它的主视图是()ABCD3计算 的结果是()ABCD4某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A9分B8分C7分D6分5在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,是白球的概率为()ABCD6若分式 的值为0,则 的值是()A2B0C-2D-57如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,
2、 )现将该三角板向右平移使点A与点O重合,得到OCB,则点B的对应点B的坐标是()A(1,0)B( , )C(1, )D(-1, )8学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满设49座客车 辆,37座客车 辆,根据题意可列出方程组()ABCD9如图,点A,B在反比例函数 的图象上,点C,D在反比例函数 的图象上,ACBD 轴,已知点A,B的横坐标分别为1,2,OAC与ABD的面积之和为 ,则 的值为()A4B3C2D10我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式后人借助
3、这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若 , ,则该矩形的面积为()A20B24CD二、填空题11分解因式: 12已知扇形的弧长为2 ,圆心角为60,则它的半径为 13一组数据1,3,2,7, ,2,3的平均数是3,则该组数据的众数为 14不等式组 的解是 15如图,直线 与 轴、 轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则OAE的面积为 16小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB
4、=5cm,小正六边形的面积为 cm2,则该圆的半径为 cm三、解答题17 (1)计算: (2)化简: 18如图,在四边形ABCD中,E是AB的中点,AD/EC,AED=B(1)求证:AEDEBC(2)当AB=6时,求CD的长19现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量20如图,P,Q是方格纸中的两格点,请按要
5、求画出以PQ为对角线的格点四边形(1)在图1中画出一个面积最小的PAQB(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到注:图1,图2在答题纸上21如图,抛物线 交 轴正半轴于点A,直线 经过抛物线的顶点M已知该抛物线的对称轴为直线 ,交 轴于点B(1)求a,b的值(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP设点P的横坐标为 ,OBP的面积为S,记 求K关于 的函数表达式及K的范围22如图,D是ABC的BC边上一点,连接AD,作ABD的外接圆,将ADC沿直线AD折叠,点C的对应点E落在上(
6、1)求证:AE=AB(2)若CAB=90,cosADB= ,BE=2,求BC的长23温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元设每天安排 人生产乙产品(1)根据信息填表产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲15乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等已知每人每天
7、可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的 值24如图,已知P为锐角MAN内部一点,过点P作PBAM于点B,PCAN于点C,以PB为直径作O,交直线CP于点D,连接AP,BD,AP交O于点E(1)求证:BPD=BAC(2)连接EB,ED,当tanMAN=2,AB=2时,在点P的整个运动过程中若BDE=45,求PD的长若BED为等腰三角形,求所有满足条件的BD的长(3)连接OC,EC,OC交AP于点F,当tanMAN=1,OC/BE时,记OFP的面积为S1,CFE的面积为S2,请写出 的值1D2B3C4C5D6A7C
8、8A9B10B11a(a-5)12613314x41516817(1) =4- +1=5- (2) =m2+4m+4+8-4=m2+1218(1)证明 :ADECA=BECE是AB中点,AE=BEAED=BAEDEBC(2)解 :AEDEBCAD=ECADEC四边形AECD是平行四边形CD=AEAB=6CD= AB=319(1)解 :150 =600(家)600 =100(家)答:甲蛋糕店数量为100家,该市蛋糕店总数为600家。(2)解 :设甲公司增设x家蛋糕店,由题意得20%(600+x)=100+x解得x=25(家)答:甲公司需要增设25家蛋糕店。20(1)(2)21(1)解 ;将x=2
9、代入y=2x得y=4 M(2,4)由题意得 ,(2)解 :如图,过点P作PHx轴于点H点P的横坐标为m,抛物线的函数表达式为y=-x2+4xPH=-m2+4mB(2,0),OB=2S= OBPH= 2(-m2+4m)=-m2+4mK= =-m+4由题意得A(4,0)M(2,4)2m4K随着m的增大而减小,0K222(1)解 :由题意得ADEADC,AED=ACD,AE=ACABD=AED,ABD=ACDAB=ACAE=AB(2)解 :如图,过点A作AHBE于点HAB=AE,BE=2BH=EH=1ABE=AEB=ADB,cosADB= cosABE=cosADB= = AC=AB=3BAC=90
10、,AC=ABBC= 23(1)产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲65-x2(65-x)15乙130-2x(2)解 :由题意得152(65-x)=x(130-2x)+550x2-80x+700=0解得x1=10,x2=70(不合题意,舍去)130-2x=110(元)答:每件乙产品可获得的利润是110元。(3)解 :设生产甲产品m人W=x(130-2x)+152m+30(65-x-m)=-2x2+100x+1950=-2(x-25)2+32002m=65-x-mm= x,m都是非负整数取x=26时,此时m=13,65-x-m=26,即当x=26时,W最大值=3198(元
11、)答:安排26人生产乙产品时,可获得的最大总利润为3198元。24(1)解 :PBAM,PCANABP=ACP=90,BAC+BPC=180BPD+BPC=180BPD=BAC (2)解 ;如图1,APB=BDE=45,ABP=90,BP=AB= BPD=BACtanBPD=tanBAC =2BP= PDPD=2 BPD=BPE=BACtanBPE=2AB= BP= BD=2如图2,当BE=DE时,EBD=EDBAPB=BDE,DBE=APCAPB=APCAC=AB= 过点B作BGAC于点G,得四边形BGCD是矩形AB= ,tanBAC=2AG=2BD=CG= 如图4,当BD=DE时,DEB=DBE=APC DEB=DPB=BACAPC=BAC设PD=x,则BD=2x =2 =2x= BD=2x=3综上所述,当BD为2,3或 时,BDE为等腰三角形(3) = 如图5,过点O作OHDC于点HtanBPD=tanMAN=1BD=DP令BD=DP=2a,PC=2b得OH=a,CH=a+2b,AC=4a+2b由OCBE得OCH=PAC = OHAC=CHPCa(4a+2b)=2b(a+2b)a=bCF= ,OF= =