低功耗蓝牙无线连接芯片技术水平特点分析

上传人:泓域M****机构 文档编号:349694530 上传时间:2023-04-20 格式:DOCX 页数:14 大小:23.79KB
返回 下载 相关 举报
低功耗蓝牙无线连接芯片技术水平特点分析_第1页
第1页 / 共14页
低功耗蓝牙无线连接芯片技术水平特点分析_第2页
第2页 / 共14页
低功耗蓝牙无线连接芯片技术水平特点分析_第3页
第3页 / 共14页
低功耗蓝牙无线连接芯片技术水平特点分析_第4页
第4页 / 共14页
低功耗蓝牙无线连接芯片技术水平特点分析_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《低功耗蓝牙无线连接芯片技术水平特点分析》由会员分享,可在线阅读,更多相关《低功耗蓝牙无线连接芯片技术水平特点分析(14页珍藏版)》请在金锄头文库上搜索。

1、低功耗蓝牙无线连接芯片技术水平特点分析围绕可再生能源比重大幅提高、弃风弃光率近零的目标,完善调度机制和运行管理方式,建立适应新能源电力大规模发展的电网运行管理体系。完善风电、太阳能、生物质能等新能源国家标准和清洁能源定价机制,建立新能源优先消纳机制。建立可再生能源发电补贴政策动态调整机制和配套管理体系。将分布式新能源纳入电力和供热规划以及国家新一轮配网改造计划,促进源网用协调发展,实现分布式新能源直供与无障碍入网。产业结构进一步优化,形成产业新体系。发展一批原创能力强、具有国际影响力和品牌美誉度的行业排头兵企业,活力强劲、勇于开拓的中小企业持续涌现。中高端制造业、知识密集型服务业比重大幅提升,

2、支撑产业迈向中高端水平。形成若干具有全球影响力的战略性新兴产业发展策源地和技术创新中心,打造百余个特色鲜明、创新能力强的新兴产业集群。一、 低功耗蓝牙无线连接芯片技术水平特点蓝牙技术最早由爱立信在1995年正式提出,国际蓝牙技术联盟(SIG)随后于1998年设立,负责制定和维护蓝牙技术标准。蓝牙技术标准在24年间从10版本演变成为当前最新的53版本,前后共经历了12次升级,最大传输速度也由7231Kbit/s增加至3Mbit/s,蓝牙技术呈现出快速升级迭代的趋势。值得关注的是,2010年蓝牙40技术版本发布,首次引入低功耗标准,使得蓝牙功耗大幅减少,标志着蓝牙技术从经典蓝牙(BT)阶段进入低功

3、耗蓝牙阶段。低功耗蓝牙技术凭借其多功能、低功耗、低成本的综合优势,逐步取代了传统的经典蓝牙技术,成为了数据传输、位置服务、设备网络等应用场景的主流解决方案。2020年,国际蓝牙技术联盟(SIG)发布了蓝牙52版本核心技术规范,支持连接类同步传输信道和广播类同步传输信道,使得低功耗蓝牙技术也更适合传输音频等对时间敏感的数据。蓝牙技术联盟也预期低功耗蓝牙音频技术将逐步取代经典蓝牙技术成为音频传输的主要解决方案。2021年7月,国际蓝牙技术联盟(SIG)发布了蓝牙53版本核心技术规范,增加了包含对定期广播、加密密钥大小控制和频道分类在内多方面的增强功能,这些性能也进一步巩固了低功耗蓝牙在物联网领域的

4、重要地位。区别于经典蓝牙无线连接技术,除了在连接方式上具有差异外,低功耗蓝牙无线连接技术具有传输距离远、功耗低和延迟低等突出优势。具体来说,在连接方式上,经典蓝牙仅限于通过点对点的方式传输,而低功耗蓝牙设备能够通过点对点、广播、Mesh组网等方式与其他设备的互连;在传输距离方面,低功耗蓝牙引入了专有的长距离传输模式,可达到数百米甚至公里级别的传输距离;在功耗上,低功耗蓝牙的优势最为突出,其运行和待机功耗是经典蓝牙的几分之一。随着低功耗蓝牙技术的快速发展,低功耗蓝牙组网(BluetoothLEMesh)技术应运而生,后者是前者实现设备网络应用的关键技术,在2017年由国际蓝牙技术联盟正式发布。在

5、低功耗蓝牙组网技术诞生前,大多数的蓝牙终端通过点对点的连接方式与其他装置进行一对一通讯,例如一支蓝牙遥控器可以控制一盏智能照明灯泡,但无法同时控制一组或者大量的智能灯泡。蓝牙组网技术诞生后,处在Mesh网络中的每个装置都能与其他任一装置连接,因此网络中任一节点的信息可通过借助其它节点作为传输信息的中转桥梁,实现网状网络内多对多的通讯,大幅超越单个节点无线射频功率所能达到的范围,延长了信息无线传输的距离,使蓝牙设备的信息采集和传输能力得到进一步提高。低功耗蓝牙组网技术在很大程度上迎合了物联网的连接需求,尤其在控制系统、监控系统、自动化系统等领域具有应用优势,因此成为目前最被看好的物联网连接技术之

6、一。二、 加快生物产业创新发展步伐,培育生物经济新动力把握生命科学纵深发展、生物新技术广泛应用和融合创新的新趋势,以基因技术快速发展为契机,推动医疗向精准医疗和个性化医疗发展,加快农业育种向高效精准育种升级转化,拓展海洋生物资源新领域、促进生物工艺和产品在更广泛领域替代应用,以新的发展模式助力生物能源大规模应用,培育高品质专业化生物服务新业态,将生物经济加速打造成为继信息经济后的重要新经济形态,为健康中国、美丽中国建设提供新支撑。到2020年,生物产业规模达到810万亿元,形成一批具有较强国际竞争力的新型生物技术企业和生物经济集群。(一)构建生物医药新体系加快开发具有重大临床需求的创新药物和生

7、物制品,加快推广绿色化、智能化制药生产技术,强化科学高效监管和政策支持,推动产业国际化发展,加快建设生物医药强国。(二)推动生物医药行业跨越升级加快基因测序、细胞规模化培养、靶向和长效释药、绿色智能生产等技术研发应用,支撑产业高端发展。开发新型抗体和疫苗、基因治疗、细胞治疗等生物制品和制剂,推动化学药物创新和高端制剂开发,加速特色创新中药研发,实现重大疾病防治药物原始创新。支持生物类似药规模化发展,开展专利到期药物大品种研发和生产,加快制药装备升级换代,提升制药自动化、数字化和智能化水平,进一步推动中药产品标准化发展,促进产业标准体系与国际接轨,加速国际化步伐。发展海洋创新药物,开发具有民族特

8、色的现代海洋中药产品,推动试剂原料和中间体产业化,形成一批海洋生物医药产业集群。三、 实现新能源汽车规模应用强化技术创新,完善产业链,优化配套环境,落实和完善扶持政策,提升纯电动汽车和插电式混合动力汽车产业化水平,推进燃料电池汽车产业化。到2020年,实现当年产销200万辆以上,累计产销超过500万辆,整体技术水平保持与国际同步,形成一批具有国际竞争力的新能源汽车整车和关键零部件企业。(一)全面提升电动汽车整车品质与性能加快推进电动汽车系统集成技术创新与应用,重点开展整车安全性、可靠性研究和结构轻量化设计。提升关键零部件技术水平、配套能力与整车性能。加快电动汽车安全标准制定和应用。加速电动汽车

9、智能化技术应用创新,发展智能自动驾驶汽车。开展电动汽车电力系统储能应用技术研发,实施分布式新能源与电动汽车联合应用示范,推动电动汽车与智能电网、新能源、储能、智能驾驶等融合发展。建设电动汽车联合创新平台和跨行业、跨领域的技术创新战略联盟,促进电动汽车重大关键技术协同创新。完善电动汽车生产准入政策,研究实施新能源汽车积分管理制度。到2020年,电动汽车力争具备商业化推广的市场竞争力。(二)建设具有全球竞争力的动力电池产业链大力推进动力电池技术研发,着力突破电池成组和系统集成技术,超前布局研发下一代动力电池和新体系动力电池,实现电池材料技术突破性发展。加快推进高性能、高可靠性动力电池生产、控制和检

10、测设备创新,提升动力电池工程化和产业化能力。培育发展一批具有持续创新能力的动力电池企业和关键材料龙头企业。推进动力电池梯次利用,建立上下游企业联动的动力电池回收利用体系。到2020年,动力电池技术水平与国际水平同步,产能规模保持全球领先。完善动力电池研发体系,加快动力电池创新中心建设,突破高安全性、长寿命、高能量密度锂离子电池等技术瓶颈。在关键电池材料、关键生产设备等领域构建若干技术创新中心,突破高容量正负极材料、高安全性隔膜和功能性电解液技术。加大生产、控制和检测设备创新,推进全产业链工程技术能力建设。开展燃料电池、全固态锂离子电池、金属空气电池、锂硫电池等领域新技术研究开发。(三)系统推进

11、燃料电池汽车研发与产业化加强燃料电池基础材料与过程机理研究,推动高性能低成本燃料电池材料和系统关键部件研发。加快提升燃料电池堆系统可靠性和工程化水平,完善相关技术标准。推动车载储氢系统以及氢制备、储运和加注技术发展,推进加氢站建设。到2020年,实现燃料电池汽车批量生产和规模化示范应用。(四)加速构建规范便捷的基础设施体系按照因地适宜、适度超前原则,在城市发展中优先建设公共服务区域充电基础设施,积极推进居民区与单位停车位配建充电桩。完善充电设施标准规范,推进充电基础设施互联互通。加快推动高功率密度、高转换效率、高适用性、无线充电、移动充电等新型充换电技术及装备研发。加强检测认证、安全防护、与电

12、网双向互动等关键技术研究。大力推动互联网+充电基础设施,提高充电服务智能化水平。鼓励充电服务企业创新商业模式,提升持续发展能力。到2020年,形成满足电动汽车需求的充电基础设施体系。四、 培育生物服务新业态以专业化分工促进生物技术服务创新发展,构建新技术专业化服务模式,不断创造生物经济新增长点。发展专业化诊疗机构,培育符合规范的液体活检、基因诊断等新型技术诊疗服务机构。发展健康体检和咨询、移动医疗等健康管理服务,推动构建生物大数据、医疗健康大数据共享平台,试点建立居民健康影像档案,鼓励构建线上线下相结合的智能诊疗生态系统,推动医学检验检测、影像诊断等服务专业化发展。提高生物技术服务对产业的支持

13、水平。发展符合国际标准的药物研发与生产服务,鼓励医药企业加强与合同研发、委托制造企业的合作。推动基因检测和诊断等新兴技术在各领域应用转化,支持生物信息服务机构提升技术水平。为药品、医疗器械、种业、生物能源等生物产品提供检测、评价、认证等公共服务,加快产品上市进度,提升产品质量。鼓励生物技术在水污染控制、大气污染治理、有毒有害物质降解、废物资源化等领域拓展应用,积极引导生物环保技术企业跨地区、跨行业联合或兼并,实现做大做强。构建生物技术专业化双创平台,降低生物产业创新创业成本,支持各类人员开办虚拟研发企业,释放创新潜能。五、 实施国家大数据战略落实大数据发展行动纲要,全面推进重点领域大数据高效采

14、集、有效整合、公开共享和应用拓展,完善监督管理制度,强化安全保障,推动相关产业创新发展。统筹布局建设国家大数据公共平台,制定出台数据资源开放共享管理办法,推动建立数据资源清单和开放目录,鼓励社会公众对开放数据进行增值性、公益性、创新性开发。加强大数据基础性制度建设,强化使用监管,建立健全数据资源交易机制和定价机制,保护数据资源权益。发展大数据在工业、农业农村、创业创新、促进就业等领域的应用,促进数据服务业创新,推动数据探矿、数据化学、数据材料、数据制药等新业态、新模式发展。加强海量数据存储、数据清洗、数据分析挖掘、数据可视化等关键技术研发,形成一批具有国际竞争力的大数据处理、分析和可视化软硬件

15、产品,培育大数据相关产业,完善产业链,促进相关产业集聚发展。推进大数据综合试验区建设。建立大数据安全管理制度,制定大数据安全管理办法和有关标准规范,建立数据跨境流动安全保障机制。加强数据安全、隐私保护等关键技术攻关,形成安全可靠的大数据技术体系。建立完善网络安全审查制度。采用安全可信产品和服务,提升基础设施关键设备安全可靠水平。建立关键信息基础设施保护制度,研究重要信息系统和基础设施网络安全整体解决方案。顺应网络化、智能化、融合化等发展趋势,着力培育建立应用牵引、开放兼容的核心技术自主生态体系,全面梳理和加快推动信息技术关键领域新技术研发与产业化,推动电子信息产业转型升级取得突破性进展。提升关

16、键芯片设计水平,发展面向新应用的芯片。加快16/14纳米工艺产业化和存储器生产线建设,提升封装测试业技术水平和产业集中度,加紧布局后摩尔定律时代芯片相关领域。实现主动矩阵有机发光二极管(AMOLED)、超高清(4K/8K)量子点液晶显示、柔性显示等技术国产化突破及规模应用。推动智能传感器、电力电子、印刷电子、半导体照明、惯性导航等领域关键技术研发和产业化,提升新型片式元件、光通信器件、专用电子材料供给保障能力。六、 推动生物制造规模化应用加快发展微生物基因组工程、酶分子机器、细胞工厂等新技术,提升工业生物技术产品经济性,推进生物制造技术向化工、材料、能源等领域渗透应用,推动以清洁生物加工方式逐步替代传统化学加工方式,实现可再生资源逐步替代化石资源。发展新生物工具创制与应用技术体系,实现一批有机酸、化工醇、烯烃、烷烃、有机胺等基础化工产品的生物法生产与应用,推动生物基聚酯、生物基聚氨酯、生物尼龙、生物橡胶、微生物多糖等生物基材料

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业/管理/HR > 经营企划

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号