钠电池产业实施意见分析

举报
资源描述
钠电池产业实施意见 尽管锂离子电池在电动汽车和便携式电子设备等传统市场上表现出色,但由于其成本高且存在安全性低等问题,因此在大规模电网存储中的部署仍然面临阻力,而成本低、安全性更高的钠离子电池将成为有益补充。因此,钠离子电池未来发展方向主要是针对一些大型储能装置,例如智能电网、电动车等,逐步实现对传统电池的取代。 十三五期间,科技部通过国家重点研发计划智能电网技术与装备重点专项,对电池储能相关技术进行了系统部署。其中,钠基储能电池技术作为重点支持方向之一,在高安全长寿命和低成本钠基储能电池的基础科学问题研究等项目系列成果推动下进步显著。 一、 钠电池负极材料:硬碳高性能与软碳低成本,鱼和熊掌不可兼得 硬碳比容量占优,软碳经济性占优,目前硬碳是主流。硬碳内部碳微晶在晶体c轴方向上的碳片层堆积较少且整体呈现出随机取向排列的特点,前驱体主要包括树脂、沥青及生物质三类。硬碳材料具有长循环寿命,储钠的比容量相对较高并且具有低电压平台,但仍面临着首次库仑效率低、倍率性能略差等问题。相比之下,石墨烯相关材料往往呈现出更高的平均电压和更低的库伦效率,而软碳的储钠比容量较低,因此硬碳综合性能相对较优,具有较广阔的应用前景。软碳是有序度较高,是在2800℃以上高温热解能够完全石墨化的非晶碳材料,前驱体主要是石油焦和沥青这类矿物质,具有低成本优势。软碳材料具有更高的电子导电性和倍率性能,但由于石墨化程度比较高,直接碳化的软碳材料在钠离子电池中表现出较低的可逆容量,储钠容量较低,实用性受限。 二、 从电池容量性能来看,钠离子高于铅酸电池,低于磷酸铁锂电池 与锂离子电池工作原理相似,钠离子电池是主要依靠钠离子在正极和负极之间移动来工作,以钠离子嵌入锂离子电池和铅酸电池,是目前市场上主流的二次电池技术,与钠离子电池工作原理相似。 目前钠离子电池行业主要竞争产品为锰酸锂电池、磷酸铁锂电池、铅酸电池以及梯次利用锂电池。通过计算钠离子正负极能量密度差异,可以得出在相同技术条件下,钠离子的能量密度约为锰酸锂电池和磷酸铁锂电池能量密度的0.7-0.8倍。 三、 国家正式提出研究开展钠离子电池等新一代高能量密度储能技术试点示范 《十四五新型储能发展实施方案》正式印发,国家正式提出研究开展钠离子电池等新一代高能量密度储能技术试点示范。方案提出,推动多元化技术开发。开展钠离子电池、新型锂离子电池、铅炭电池、液流电池、压缩空气、氢(氨)储能、热(冷)储能等关键核心技术、装备和集成优化设计研究,集中攻关超导、超级电容等储能技术,研发储备液态金属电池、固态锂离子电池、金属空气电池等新一代高能量密度储能技术。突破全过程安全技术。突破电池本质安全控制、电化学储能系统安全预警、系统多级防护结构及关键材料、高效灭火及防复燃、储能电站整体安全性设计等关键技术,支撑大规模储能电站安全运行。 四、 钠电池市场空间:四轮车-2025年有望达到48.45GWh 钠电池有机会渗透的动力电池市场主要包括A00级、A0级以及A级三种电动车。具体来看,钠电池可以满足续航里程在400公里以下的新能源汽车车型的基本需求,400公里以下的新能源汽车车型主要包括A00和A0级别电动车车型,未来钠电池能满足的续航里程有望进一步提升至500公里,能够覆盖的车型则将进一步延伸至A型级别电动车。 由于上游原材料尤其是锂价的持续高位,电动车领域受到持续性冲击。钠离子电池凭借成本优势,在产品标准化程度提高后,有望切入A00级、A0级以及A级电动车领域。 预计2023-2025年钠电池在A00级、A0级以及A级电动车市场的渗透率将逐年升高,2025年分别达到30%、20%、15%,2025年对钠离子电池需求总量有望达到48.45Gwh。 五、 随着生产技术的不断提升,钠离子电池未来发展前景广阔 1、钠离子电池生产技术不断成熟,规模量产有望实现 由于钠离子电池的结构和工作原理基本与锂离子电池相同,因此,钠离子电池可以借鉴锂离子电池的产业化经验,极大的简化钠离子电池的生产工序。但是由于钠离子半径要比锂离子大70%,导致钠离子电池能量密度不足,为此,相关企业纷纷加大研发投入力度,钠离子电池应用的关键问题被逐渐攻克,前期制约钠离子电池产业化的正负极材料均已实现技术突破,层状氧化物正极+碳基负极+有机电解液体系的钠离子电池即将迈入到商业化阶段,有望实现规模化生产。同时,钠离子电池的原材料成本相对于锂离子电池具有天然的优势,尤其是在碳酸锂价格处于高位的情况更为显著,锂离子电池成本居高不下将推动钠离子电池产业化进程的加速。 2、钠离子电池前景广阔,跨界企业加速布局 目前,我国锂离子电池受原材料影响价格猛涨,相关企业成本增加导致盈利减少,为此,锂电池相关企业选择性价比较高的钠离子电池来替代锂离子电池发展。在资源方面,我国钠资源储量丰富,分布广泛,与锂资源相比能很好的减少对国外资源的需求。在价格方面,由于钠离子电池正极用铜铁锰,负极用无烟煤做的碳,整体电芯成本低于锂电池,并不会像锂离子电池一样受到原材料价格波动影响,价格较为稳定。在性能方面,钠离子电池由于高安全性而受到行业重视。随着钠离子电池生产技术的不断提升,钠离子电池将拥有更广阔的发展空间,其应用范围在储能、电动汽车等领域不断拓展。在储能方面,随着未来钠离子电池的规模化生产,将逐渐替代锂离子电池在储能方面的应用,未来市场空间广阔。在电动汽车方面,新能源汽车作为政策驱动的产物,需求量不断增加,由于能量密度不足,钠离子电池能够在微型汽车方面得到加速应用。 六、 锂电池价格上涨,推动钠离子电池需求量的增加 钠离子电池的研发起步较早,产业化应用的速度不及锂离子电池,但近年来学术研究和产业应用的热度持续上升。在1967年,高温钠硫电池出现是钠离子电池发展的萌芽时期,到1979年法国的Armand提出了摇椅式电池的概念后,由于锂离子电池体系中应用较为广泛的石墨负极储钠能力欠缺,对钠离子电池的研究几乎停滞。直至2000年加拿大Dahn等发现硬碳负极具备优异的可逆储钠能力,学界才继续推进。到2010年,随锂离子电池研究和产业链建设趋于成熟,以及对锂资源的担忧,钠离子电池的研究和产业化进程,进入复兴时期。直至2021年7月,宁德时代发布第一代钠离子电池,宣布计划2023年形成基本产业链,叠加锂价在2021年底-2022年年初快速上涨,引发全产业链对互补、替代方案钠离子电池的高度重视,涌现数十家推动钠离子电池及原材料量产的企业。 磷酸锂是一种锂离子电池电极材料,主要用于锂离子电池。近年来由于我国电动汽车产量快速增长,导致锂离子电池产能的提升,从而出现碳酸锂价格飞涨的局面。数据显示,我国磷酸锂价格在2021年年末到2022年年初价格增长迅速,导致锂离子电池原材料成本较高,价格上涨趋势明显,将使其在大规模储能中的应用受到限制。同时,锂元素的地壳丰度只有0.0065%,我国锂资源十分短缺,大部分依赖于进口,而钠元素的地壳丰度为2.74%,地域分布广泛,我国的钠资源较锂资源相对丰富,成本低廉。为了防止国外对锂资源的垄断,我国将大力发展钠离子电池,以替代锂离子电池,在一定程度上缓解由于锂资源短缺引发的储能电池发展受限问题。 因为能量密度的短板,钠离子电池的应用尚出现在中高端的电动汽车上,在微型电动车及两轮电动车上将率先应用。数据显示,近年来,随着经济的快速发展,人们的收入水平的提高,两轮电动车的产销量整体呈现上涨趋势,其中产量从2017年的3113万辆增加到2021年的5443万辆,销售量从2017年的2943万辆增加到2021年的4100万辆。由于两轮电动车产品价格较低,适合中、小型城市和县乡市场的用户,未来市场空间广阔,有利于促进钠离子电池需求量的增长。 当前电动两轮车、A00级电动车受锂离子电池价格上涨的影响,选择性价比较高的钠离子电池进行替代,随着电动两轮车、A00级电动车的不断发展,钠离子电池的需求量向好发展,同时,钠离子电池可利用廉价的钠盐取代锂盐作为电池关键原料,已经成为新一代储能电池研究的热点,在快速发展的储能领域,钠离子电池有望成为重要的技术路线之一。在2017-2021年中,我国钠离子电池供给量和需求量呈现逐年上升的趋势,其市场价格走势不断下降,从2017年的7.14亿元/GWh下降到2021年的6.66亿元/GWh。 目前,我国钠离子电池处于发展前期,还未形成基本的产业链。从专利申请量来看,在2017-2021年间,中国钠离子电池专利申请量整体上处于上升趋势,其中2020年受疫情影响,钠离子电池的申请量有小幅下降,较2019年减少33项,根据IP管家统计,2022年1-11月的申请量达到了1379项,可见,钠离子电池逐步受到各方面的重视,未来市场占有率也将逐步提升。 七、 钠电池电解液-溶质:性能存在缺陷,六氟磷酸钠生产技术需进一步开发 溶质作为电池电解液关键成分之一,直接决定电解液的性能。和锂离子电池以锂盐作为溶质提供Li+相似,钠离子电池的溶质为钠盐,是Na+的主要提供者,不但影响电池的功率和循环性能,还会影响容量和安全性。 在选择钠盐时应该注意以下几个原则:(1)本身的物化性能包括黏度、电导率、热稳定性等优异;(2)与溶剂混合后对电极的兼容性;(3)保持对电池其他组分具有电化学惰性的特点,例如电极、隔膜和集流体等。 三条路线各有优缺,NaPF6综合性能最佳。市场上钠盐大致分为含氟钠盐(NaPF6,NaTFSI,NaFSI等),含硼钠盐(NaBF4,NaBOB等)以及其他钠盐(NaCLO4等)三条路线。NaPF6除了本质的安全问题外,综合性能最佳,是目前较为常用的钠盐。由于其化学性质,每种钠盐的应用各有优缺:(1)NaPF6热稳定性强,具有较高的电导率,在300℃时几乎没有安全损失,但NaPF6对水很敏感,容易产生高度腐蚀性的氢氟酸(HF)与SEI膜的碱性成分反应,产生有害气体来削弱刚性SEI膜;含氟磺酰基团的钠盐(NaTFSI,NaFSI等)虽然具有较高的热稳定性和无毒的特点,但是其阴离子对铝箔集流体具有腐蚀作用。(2)NaBF4是常见的含硼钠盐,但受制于电导率的限制,应用较少。NaBOB是一种新型环保钠盐,具有较高热稳定性,但受制于溶解度无法大规模应用。(3)NaCLO4应用于碳质电极会使其具有较高的容量和较高的库仑效率,但NaCLO4难于干燥且易制爆。 适配高性能钠电,钠盐材料应进一步开发。目前,常用的钠盐主要有六氟磷酸钠(NaPF6)、高氯酸钠(NaClO4)和双三氟甲烷磺酰亚胺钠(NaTFSI)等,但它们都存在一定的缺陷,难以满足高性能钠离子电池的需求。要提高钠离子电池的性能,除了使用添加剂(如氟代碳酸乙烯酯)外,还需要寻找高性能的钠盐。目前,理论层面上发现部分含氰基无氟钠盐、有机硼酸类钠盐、氟类咪唑衍生物钠盐和有机酰胺类等钠盐具备一定的性能优势。筛选性能优良的钠盐,进而加入添加剂优化电解质体系,从而提高SEI的稳定性、抑制钠枝晶的生长及改善电极材料/电解液的界面相容性,是今后研究的重点。 六氟磷酸钠的生产技术储备为行业壁垒。多氟多2022年9月表示,六氟磷酸钠均价超过50万/吨,其价格受限于钠离子电池产业化处于行业早期,上游产品未成规模化,并且六氟磷酸钠的生产技术储备为行业壁垒,难度较大。 八、 从电池的安全性来看,钠离子电池具有更好的热稳定性 全球锂电池起火事故频出,电动车、储能起火事故频发,据不完全统计,2011-2021年全球共发生32起储能电站起火爆炸事故,其中26起事故采用三元锂离子电池。 钠离子电池电化学性能相对稳定,热失控过程中容易钝化失活,安全实验表现较锂离子电池更好。目前,钠离子电池已通过中汽中心的检测,针剌时不冒烟、不起火、不爆炸,经受短路、过充、过放、挤压等实验也不起火燃烧。对比锂离子电池起始自加热温度达到165℃,钠离子电池则达到260℃:且在ARC测试中钠离子电池最大自加热速度显著低于锂离子电池,这些均表明钠离子电池具有更好的热稳定性。
展开阅读全文
温馨提示:
金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
相关搜索

当前位置:首页 > 办公文档 > 解决方案


电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号