专题02 曲线的切线方程考点一 求切线的方程【方法总结】求曲线切线方程的步骤(1)求曲线在点P(x0,y0)处的切线方程的步骤第一步,求出函数y=f(x)在点x=x0处的导数值f′(x0),即曲线y=f(x)在点P(x0,f(x0))处切线的斜率;第二步,由点斜式方程求得切线方程为y-f(x0)=f′(x0)·(x-x0).(2)求曲线过点P(x0,y0)的切线方程的步骤第一步,设出切点坐标P′(x1,f(x1));第二步,写出过P′(x1,f(x1))的切线方程为y-f(x1)=f′(x1)(x-x1);第三步,将点P的坐标(x0,y0)代入切线方程,求出x1;第四步,将x1的值代入方程y-f(x1)=f′(x1)(x-x1)可得过点P(x0,y0)的切线方程.注意:在求曲线的切线方程时,注意两个“说法”:求曲线在点P处的切线方程和求曲线过点P的切线方程,在点P处的切线,一定是以点P为切点,过点P的切线,不论点P在不在曲线上,点P不一定是切点.【例题选讲】[例1](1) (2021·全国甲)曲线y=在点(-1,-3)处的切线方程为________.答案 5x-y+2=0 解析 y′=′==,所以y′|x=-1==5,所以切线方程为y+3=5(x+1),即5x-y+2=0.(2) (2020·全国Ⅰ)函数f(x)=x4-2x3的图象在点(1,f(1))处的切线方程为( )A.y=-2x-1 B.y=-2x+1 C.y=2x-3 D.y=2x+1答案 B 解析 f(1)=1-2=-1,切点坐标为(1,-1),f′(x)=4x3-6x2,所以切线的斜率为k=f′(1)=4×13-6×12=-2,切线方程为y+1=-2(x-1),即y=-2x+1.(3) (2018·全国Ⅰ)设函数f(x)=x3+(a-1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为( )A.y=-2x B.y=-x C.y=2x D.y=x答案 D 解析 法一 因为函数f(x)=x3+(a-1)x2+ax为奇函数,所以f(-x)=-f(x),所以(-x)3+(a-1)(-x)2+a(-x)=-[x3+(a-1)x2+ax],所以2(a-1)x2=0.因为x∈R,所以a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.1法二 因为函数f(x)=x3+(a-1)x2+ax为奇函数,所以f(-1)+f(1)=0,所以-1+a-1-a+(1+a-1+a)=0,解得a=1,此时f(x)=x3+x(经检验,f(x)为奇函数),所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.法三 易知f(x)=x3+(a-1)x2+ax=x[x2+(a-1)x+a],因为f(x)为奇函数,所以函数g(x)=x2+(a-1)x+a为偶函数,所以a-1=0,解得a=1,所以f(x)=x3+x,所以f′(x)=3x2+1,所以f′(0)=1,所以曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.(4) (2020·全国Ⅰ)曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为________.答案 2x-y=0 解析 设切点坐标为(x0,y0),因为y=ln x+x+1,所以y′=+1,所以切线的斜率为+1=2,解得x0=1.所以y0=ln 1+1+1=2,即切点坐标为(1,2),所以切线方程为y-2=2(x-1),即2x-y=0.(5)已知函数f(x)=xlnx,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为 .答案 x-y-1=0 解析 ∵点(0,-1)不在曲线f(x)=xln x上,∴设切点为(x0,y0).又∵f′(x)=1+ln x,∴直线l的方程为y+1=(1+ln x0)x.∴由解得x0=1,y0=0.∴直线l的方程为y=x-1,即x-y-1=0.(6) (2021·新高考Ⅰ)若过点(a,b)可以作曲线y=ex的两条切线,则( )A.eb0)处的切线与直线x-y-2=0平行,则==2x0-=1.∴x0=1,y0=1,则P(1,1),则曲线y=x2-ln x上的点到直线x-y-2=0的最短距离d==.【对点训练】1.设点P是曲线y=x3-x+上的任意一点,则曲线在点P处切线的倾斜角α的取值范围为( )A.∪ B. C.∪ D.1.答案 C 解析 y′=3x2-,∴y′≥-,∴tan α≥-,又α∈[0,π),故α∈∪,故选C.2.函数f(x)=ex+在x=1处的切线方程为 .2.答案 y=(e-1)x+2 解析 f′(x)=ex-,∴f′(1)=e-1,又f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.(2019·全国Ⅰ)曲线y=3(x2+x)ex在点(0,0)处的切线方程为________.3.答案 y=3x 解析 y′=3(2x+1)ex+3(x2+x)ex=3ex(x2+3x+1),所以曲线在点(0,0)处的切线的斜率3k=e0×3=3,所以所求切线方程为y=3x.4.曲线f(x)=在点P(1,f(1))处的切线l的方程为( )A.x+y-2=0 B.2x+y-3=0 C.3x+y+2=0 D.3x+y-4=04.答案 D 解析 因为f(x)=,所以f′(x)=.又f(1)=1,且f′(1)=-3,故所求切线方程为y-1=-3(x-1),即3x+y-4=0.5.(2019·全国Ⅱ)曲线y=2sin x+cos x在点(π,-1)处的切线方程为( )A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=05.答案 C 解析 设y=f(x)=2sin x+cos x,则f′(x)=2cos x-sin x,∴f′(π)=-2,∴曲线在点(π,-1)处的切线方程为y-(-1)=-2(x-π),即2x+y-2π+1=0.故选C.6.(2019·天津)曲线y=cos x-在点(0,1)处的切线方程为________.6.答案 y=-x+1 解析 y′=-sin x-,将x=0代入,可得切线斜率为-.所以切线方程为y-1=-x,即y=-x+1.7.已知f(x)=x为奇函数(其中e是自然对数的底数),则曲线y=f(x)在x=0处的切线方程为 .7.答案 2x-y=0 解析 ∵f(x)为奇函数,∴f(-1)+f(1)=0,即e+--ae=0,解得a=1,f(x)=x,∴f′(x)=+x,∴曲线y=f(x)在x=0处的切线的斜率为2,又f(0)=0,∴曲线y=f(x)在x=0处的切线的方程为2x-y=0.8.已知曲线y=x3上一点P,则过点P的切线方程为________.8.答案 3x-3y+2=0或12x-3y-16=0 解析 设切点坐标为,由y′=′=x2,得y′|x=x0=x,即过点P的切线的斜率为x,又切线过点P,若x0≠2,则x=,解得x0=-1,此时切线的斜率为1;若x0=2,则切线的斜率为4.故所求的切线方程是y-=x-2或y-=4(x-2),即3x-3y+2=0或12x-3y-16=0.49.已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为 .9.答案 x-y-1=0 解析 ∵点(0,-1)不在曲线f(x)=xln x上,∴设切点为(x0,y0).又∵f′(x)=1+lnx,∴直线l的方程为y+1=(1+ln x0)x.∴由解得x0=1,y0=0.∴直线l的方程为y=x-1,即x-y-1=0.10.设函数f(x)=f′x2-2x+f(1)ln x,曲线f(x)在(1,f(1))处的切线方程是( )A.5x-y-4=0 B.3x-y-2=0 C.x-y=0 D.x=110.答案 A 解析 因为f(x)=f′x2-2x+f(1)ln x,所以f′(x)=2f′x-2+.令x=得f′=2f′×-2+2f(1),即f(1)=1.又f(1)=f′-2,所以f′=3,所以f′(1)=2f′-2+f(1)=6-2+1=5.所以曲线在点(1,f(1))处的切线方程为y-1=5(x-1),即5x-y-4=0.11.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f(x。