矩阵分析 - 北京理工大学研究生院 课程名称:矩阵分析 一、课程编码:1700002 课内学时: 32 学分: 2 二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业 三、先修课程:线性代数,高等数学 四、教学目标 通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据 五、教学方式 教师授课 六、主要内容及学时分配 1、线性空间和线性变换(5学时) 1.1线性空间的概念、基、维数、基变换与坐标变换 1.2子空间、线性变换 1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件 2、λ-矩阵与矩阵的Jordan标准形(4学时) 2.1 λ-矩阵及Smith标准形 2.2 初等因子与相似条件 2.3 Jordan标准形及应用; 3、内积空间、正规矩阵、Hermite 矩阵(6学时) 3.1 欧式空间、酉空间 3.2标准正交基、Schmidt方法 3.3酉变换、正交变换 3.4幂等矩阵、正交投影 3.5正规矩阵、Schur 引理 3.6 Hermite 矩阵、Hermite 二次齐式 3.7.正定二次齐式、正定Hermite 矩阵 3.8 Hermite 矩阵偶在复相合下的标准形 课程名称:矩阵分析 一、课程编码:1700002 课内学时: 32 学分: 2 二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业 三、先修课程:线性代数,高等数学 四、教学目标 通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。
五、教学方式 教师授课 六、主要内容及学时分配 1、线性空间和线性变换(5学时) 1.1线性空间的概念、基、维数、基变换与坐标变换 1.2子空间、线性变换 1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件 2、λ-矩阵与矩阵的Jordan标准形(4学时) 2.1 λ-矩阵及Smith标准形 2.2 初等因子与相似条件 2.3 Jordan标准形及应用; 3、内积空间、正规矩阵、Hermite 矩阵(6学时) 3.1 欧式空间、酉空间 3.2标准正交基、Schmidt方法 3.3酉变换、正交变换 3.4幂等矩阵、正交投影 3.5正规矩阵、Schur 引理 3.6 Hermite 矩阵、Hermite 二次齐式 3.7.正定二次齐式、正定Hermite 矩阵 3.8 Hermite 矩阵偶在复相合下的标准形 。