同步电机励磁原理讲课文档

上传人:那****丑 文档编号:285065083 上传时间:2022-04-29 格式:PPT 页数:57 大小:5.15MB
返回 下载 相关 举报
同步电机励磁原理讲课文档_第1页
第1页 / 共57页
同步电机励磁原理讲课文档_第2页
第2页 / 共57页
同步电机励磁原理讲课文档_第3页
第3页 / 共57页
同步电机励磁原理讲课文档_第4页
第4页 / 共57页
同步电机励磁原理讲课文档_第5页
第5页 / 共57页
亲,该文档总共57页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《同步电机励磁原理讲课文档》由会员分享,可在线阅读,更多相关《同步电机励磁原理讲课文档(57页珍藏版)》请在金锄头文库上搜索。

1、n同步电机励磁原理第一页,共五十七页。同步电机励磁控制系统的原理及应用同步电机励磁控制系统的原理及应用o序言序言o主回路的选择主回路的选择o同步电机的投励方式同步电机的投励方式o同步电动机的失步危害、失步保护及带载自同步电动机的失步危害、失步保护及带载自动再整步技术动再整步技术oLZK-3G励磁控制系统励磁控制系统第二页,共五十七页。第一章第一章 序言序言l同步电机由于其一系列优点,特别是转速稳定、单机容量大、能向电网发送无功功率,支持电网电压,在我国各行业已得到广泛应用。l多数企业所用电机,一般异步电机数量较多,单机功率相对较小,且大多为380V低压电机。异步电机在运行中需吸收无功功率,对于

2、一个较大规模的用电单位,电机的选用一般遵循如下原则:大功率、低转速电机一般首选同步电机(随着碳刷耐磨程度提高,许多大功率高速电机也越来越多的选用同步电机)。用电单位同步电机的运行容量一般在60%70%,而异步电机的运行容量在40%30%为佳。这样同步电机输出的无功功率与异步电机所吸收的无功功率相平衡且略有富裕。 序言l同步电动机在工业中的应用:同步电动机在工业中的应用:第三页,共五十七页。同步、异步电动机比较表 序言稳定性差,转矩与端电压平方成正比:稳定性高,转矩与端电压成正比: 稳 定 性 低 高效 率不可调,滞后可调,可工作在超前、平激、滞后功率因数随着负载的改变而改变不随负载的大小而 改

3、变转 速 异步电动机 同步电动机第四页,共五十七页。使用异步电机需要对电网无功补偿 由于异步电机需从电网吸收无功功率,而功率因数是供电部门对用户考核的一个重要指标。一般采用以下方法进行无功补偿: 1.采用静电电容器补偿 2.采用同步电机过励补偿但是采用静电电容器补偿存在以下缺陷: 序言第五页,共五十七页。采用静电电容器补偿存在缺陷1nQ0.5CU 在电网电压高时,用户无功补偿需求量小,但电容量Q成平方关系变大,电容器补偿无功会出现过补偿现象;在电网电压低时,用户无功补偿需求量大,但电容量Q却成平方关系变小,电容器补偿无功会出现欠补偿现象;与我们期望的补偿要求成平方关系相反的方向变化;2 2第六

4、页,共五十七页。采用静电电容器补偿存在缺陷2n 为了解决上述矛盾,许多场合采用功率因数自动补偿的方式,当功率因数过低的时候,增加电容器的投入数量;当功率因数过高的时候,减少电容器的投入数量,通过有级切换电容器的投运数量,达到功率因数的基本稳定。采用这种方法,虽然能保持功率因数的基本稳定,但毕竟是有级切换,不是无级连续的。为了保证功率因数的相对稳定,断路器需频繁动作,在容性负载下断路器的频繁切换,会大大降低其使用寿命;第七页,共五十七页。采用静电电容器补偿存在缺陷3、4n许多场合为了追求较高的功率因数,经常出现功率因数接近1甚至过激现象。由于异步电动机是感性负载,电容器是容性负载,在有些特殊情况

5、下甚至出现并联谐振或串联谐振,产生大电流或高电压,损伤电气设备;n部分电容器的介质含有氰化物,这些电容器报废时还会造成一定的环境污染。第八页,共五十七页。同步电动机通过增加电机的励磁电流,可以实现对电网无功补偿 序言 在在电电网网电电压压U U为为常常值值,电电磁磁功功率率为为常常值值时时,励励磁磁电电流流与与功功率率因因数数的的关关系系就就可可以以由由电电枢枢电电流流得得到到,见见左左图图。调调节节励励磁磁就就可可以以调调节节同同步步电电动动机机的的功功率率因因数数,从从而而使使其其工工作作在在超超前前、平平激激、滞滞后三种状态。后三种状态。0超前滞后定定子子电电流流ID励磁电流励磁电流If

6、 同步电机工作U形曲线第九页,共五十七页。同步电机补偿意义 这样既提高同步电动机运行的稳定性,又给企业带来可观的经济效益。 序言第十页,共五十七页。目前同步电机的使用现状目前同步电机的使用现状 n随着现代化大生产的发展,机电设备越来越趋向大型化、自动化、复杂化、生产过程连续化,由机电设备群体组成的系统一旦失效,就会对企业的安全生产及产品质量造成极大的威胁。同步电机由于其具有一系列优点,特别是转速稳定、单机容量大、能向电网发送无功功率,支持电网电压,在我国各行业已得到广泛应用,特别是在特大型企业,大型同步电动机担负着生产的重任,其一旦停机或故障,将严重影响连续生产,特别严重的电机设备事故将导致停

7、产时间的延长,造成企业经济效益的严重损失,而长期以来发生同步电动机及其励磁装置损坏事故却屡见不鲜。 序言第十一页,共五十七页。同步电机的损坏主要表现1.定子绕组端部绑线蹦断,线圈表面绝缘蹭坏,连接处开焊;导线在槽口处断裂,进而引起短路;运行中噪音增大;定子铁芯松动等故障 。(见下一页图)2.转子励磁起动绕组笼条断裂;绕组接头处产生裂纹,开焊,局部过热烤焦绝缘;转子磁级的燕尾锲松动,退出;转子线圈绝缘损伤;电刷滑环松动;风叶断裂等故障。 序言第十二页,共五十七页。转子绕组剖面图 转子模拟图 定子绕组 序言第十三页,共五十七页。第二章第二章 励磁主回路的合理选配励磁主回路的合理选配l传统半控、全控

8、桥励磁主回路的比较l改进型半控、全控桥励磁主回路比较 l励磁控制系统主回路元件选配主回路的选择第十四页,共五十七页。励磁柜主电路一般有四种主回路的选择图1图2图4图3第十五页,共五十七页。n在起动时左上图正负方向电流明显不平衡,产生直流电,引起电机遭引起电机遭受脉振转矩强烈振动受脉振转矩强烈振动,电机起动过程所受强电机起动过程所受强烈脉振是电机产生暗烈脉振是电机产生暗伤逐步损坏的重要原伤逐步损坏的重要原因之一因之一。传统半、全控桥主回路分析传统半、全控桥主回路分析主回路的选择图一图一图二图二第十六页,共五十七页。图一图一主回路的选择上图主回路在电机起动时有:第十七页,共五十七页。 因此出现如右

9、图二的转因此出现如右图二的转子感应电压、电流曲线子感应电压、电流曲线图。图。 现将感应电流做直流现将感应电流做直流交流成分分解如下:交流成分分解如下:图二图二UfIf主回路的选择不难看出电机启动过程中不难看出电机启动过程中+if+if和和-if-if相差较大,即:相差较大,即:远大于远大于远大于远大于第十八页,共五十七页。主回路的选择IfNS 图二图二图二图二 定子转子示意图定子转子示意图定子转子示意图定子转子示意图n n电流if分解如上图。If1分解为if2和if3。由于直流分量的存在,类似将转子提前投励磁,因而电机在旋转磁场作用下强烈脉震。第十九页,共五十七页。电机脉震示意图电机脉震示意图

10、主回路的选择NSNSNSNSNSSNNSNS转子中有直流分量;转子中有直流分量;转子中有直流分量;转子中有直流分量;定子旋转磁场和转子有相对运动定子旋转磁场和转子有相对运动定子旋转磁场和转子有相对运动定子旋转磁场和转子有相对运动. .第二十页,共五十七页。定子电流也因此而强烈脉动定子电流也因此而强烈脉动 n电机起动过程发出的强烈振动声,甚至在整个大厅内都可以听到。而且这种脉振会一直持续到电机起动结束才消失,电机起动过程所受强烈脉震是电机损伤的重要原因之一。主回路的选择Id实际定子电流曲线期望定子电流曲线T图一:定子电流脉振图0 0第二十一页,共五十七页。主回路的选择传统全控桥主回路传统全控桥主

11、回路 电机起动时,随着电机起动过程滑差减小,转子线圈内感应电势逐步减少,当转子转速达到50%以上时,励磁回路感应电流负半波通路不畅,将处于时通时断,似通非通状态,同样形成+if与-if电流不对称,由此同样形成脉振转矩,造成电机产生强烈振动,损伤电机。因此传统主回路逐渐被淘汰。第二十二页,共五十七页。改进型全控桥式励磁装置主回路缺点 :n采用逆变灭磁,可靠性低,稳定性差n电机运行时灭磁电阻长期发热n不能不停机更换控制组件n停机要保正控制回路不失电主回路的选择改进型全控桥式励磁装置主回路 KZKZKQKQRfRf 触发角为触发角为9090度时输出电压度时输出电压U Ud d第二十三页,共五十七页。

12、n(1)采用全控桥式电路,停机时或失步时,其励磁控制系统的灭磁回路采用逆变灭磁的方式,而逆变灭磁要求电网电压相对稳定、主回路(包括主桥6只可控硅、快熔、整流变压器等)及控制回路完好,停机时主回路电源不能马上停止。上述条件只要某一条件不能满足,将造成逆变灭磁不成功,造成逆变颠覆,损坏主回路元件及电机,往往出现正常运行的励磁装置停车后不能再次顺利开车,经检查发现主回路元件或控制回路损坏的实例。n(2)采用全控桥式电路,由于励磁绕组系电感性负载,当可控硅导通角较小电压波形出现过零时,就会有电流从Rf、KZ回路续流,这也是采用全控桥式电路经常发生灭磁电阻发热的原因之一。n(3)全控桥式电路作为励磁装置

13、的主电路,不能实现不停机完全更换控制插件。为了达到不停机更换插件的功能,只能将控制系统做成双系统或多系统、互为热备用,即一套运行,一套热备用。当一套控制系统故障时,自动切换到另一套备用系统。但是采用多CPU备份没有实际意义,复杂的备份逻辑会减少系统的平均无故障工作时间,影响可靠性。主回路的选择第二十四页,共五十七页。n断励续流灭磁或阻容灭磁,可靠性高n系统可以利用半控桥式主电路的结构特点,实现不停机更换励磁控制插件 n线路相对简洁可靠主回路的选择改进型半控桥式励磁装置主回路特点 半控桥式励磁装置主回路 KZKZKQKQRfRf第二十五页,共五十七页。n(1)电机在停机或失步时,主回路采用半控桥

14、式电路,可根据工况选择阻容灭磁或断励续流灭磁方式,或者两者皆用。A:断励续流灭磁方式是在电机失步或停机时,励磁控制系统立即停发触发脉冲,通过控制回路断开励磁主回路接触器。依靠半控桥式结构特点进行续流灭磁,这种灭磁方式独立可靠B:阻容灭磁方式(见下页图),这种灭磁方式灭磁速度更快。改进型半控桥主回路优点改进型半控桥主回路优点主回路的选择第二十六页,共五十七页。n n阻容灭磁是当电机失步和停机时,励磁控制系统适时提供给可控硅KM一个脉冲,利用电容C1关断主桥路上的可控硅,使电容C2及电阻R4吸收转子能量进行灭磁,这种灭磁方式速度更快。主回路的选择第二十七页,共五十七页。励磁控制系统半控桥主回路优点

15、励磁控制系统半控桥主回路优点n(2)灭磁电阻状态; 采用半控桥式电路,就不会有电流从Rf、KZ回路续流,而是通过可控硅和最后一个导通的二极管,因此采用半控桥式电路灭磁电阻在运行过程中处于冷态;主回路的选择 半控桥式励磁装置主回路 KZKZKQKQRfRf第二十八页,共五十七页。励磁控制系统半控桥主回路优点励磁控制系统半控桥主回路优点(3)励磁控制系统可以充分利用半控桥式主电路的结构特点,不停机更换励磁控制器; 当励磁装置控制部分出现故障时,可利用半空桥电路“失控”的特点,实现不停机、不减载、不失励的情况下从容更换。其基本原理如下: 在投励后拔控制插件,由于电机励磁绕组的大电感特性,使一只可控硅

16、始终处于开通状态,三分之二在整流状态,三分之一在续流状态。(如下页图)主回路的选择第二十九页,共五十七页。 在选择整流变压器时,已合理选配二次电压,使它既能满足强励要求,又在失控状态下平均电压与平时运行电压接近,满足电机正常运行对励磁的需求。当更换上备用控制插件后,励磁装置自动转入正常工作状态。 主回路的选择励磁控制系统半控桥主回路优点励磁控制系统半控桥主回路优点第三十页,共五十七页。主回路熔断器的位置选择 有些主回路采用六个快熔,分别对应着各个可控硅和二极管,但按上图位置安装快熔更佳。 半控桥励磁装置主回路 KZKZKQKQRfRf第三十一页,共五十七页。n减小谐波减小谐波 改善波形:改善波形: 尽管半空桥式电路比全控桥式电路谐波分量相对大些,但只要合理选择整流变压器参数,使励磁装置在正常运行时导通角相对增大,将整流变压器接成/Y-11型,自动抵消谐波的主要成分三次谐波,降低谐波对电网的影响。n垫底处理垫底处理 避免失控:避免失控: 使用半控桥式电路,当励磁电流在很小时,会出现失控现象,而在同步电动机这一特殊领域,励磁电流很低会造成电机失步,所以正常运行时,励磁电流不应很低,不应该工

展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 心得体会

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号