02.立体几何之内切球与外接球习题讲义教师版(20211208195211)

上传人:月亮****转 文档编号:228557409 上传时间:2021-12-23 格式:PDF 页数:12 大小:1.13MB
返回 下载 相关 举报
02.立体几何之内切球与外接球习题讲义教师版(20211208195211)_第1页
第1页 / 共12页
02.立体几何之内切球与外接球习题讲义教师版(20211208195211)_第2页
第2页 / 共12页
02.立体几何之内切球与外接球习题讲义教师版(20211208195211)_第3页
第3页 / 共12页
02.立体几何之内切球与外接球习题讲义教师版(20211208195211)_第4页
第4页 / 共12页
02.立体几何之内切球与外接球习题讲义教师版(20211208195211)_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《02.立体几何之内切球与外接球习题讲义教师版(20211208195211)》由会员分享,可在线阅读,更多相关《02.立体几何之内切球与外接球习题讲义教师版(20211208195211)(12页珍藏版)》请在金锄头文库上搜索。

1、1 立体几何外接球内切球破解策略一方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球 . 有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力 . 研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,解决这类问题的关键是抓住外接的特点, 即球心到多面体的顶点的距离等于球的半径并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用。当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体。与球的外切问题主要是指球外切

2、多面体与旋转体,解答时首先要找准切点,通过作截面来解决. 如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作. 当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积来求球的半径。二解题策略类型一构造法(补形法)【指点迷津】当一三棱锥的三侧棱两两垂直时,可将三棱锥补成一个长方体,将问题转化为长方体(正方体)来解。长方体的外接球即为该三棱锥的外接球。2 【指点迷津】当一四面体或三棱锥的棱长相等时,可以构造正方体,在正方体中构造三棱锥或四面体,利用三棱锥或四面体与正方体的外接球相同来解即可。类型二正

3、棱锥与球的外接【指点迷津】求正棱锥外接球的表面积或体积,应先求其半径,在棱锥的高上取一点作为外接球的球心,构造直角三角形,利用勾股定理求半径。类型三直棱柱的外接球【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径。练习:3 立体几何中的“内切”与“外接”问题的探究1 球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1球与正方体如图 1

4、所示,正方体1111DCBAABCD, 设正方体的棱长为a,GHFE,为棱的中点,O为球的球心。常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFHG和其内切圆,则2arOJ;二是与正方体各棱相切的球,截面图为正方形EFHG和其外接圆,则aROG22;三是球为正方体的外接球,截面图为长方形11AACC和其外接圆,则231aROA. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面, 通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题。例 1 棱长为 1 的正方体1111ABCDA B C

5、 D的 8 个顶点都在球O的表面上,EF,分别是棱1AA,1DD的中点,则直线EF被球O截得的线段长为()A22 B 1 C 212D21.2球与长方体长方体各顶点可在一个球面上,故长方体存在外接球. 但是不一定存在内切球.设长方体的棱长为a,b,c 其体对角线为l. 当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22labcR4 例 2 在长、宽、高分别为2, 2,4 的长方体内有一个半径为1 的球,任意摆动此长方体,则球经过的空间部分的体积为 ( )A.103 B.4 C.83D.731.3球与正棱柱球与一般的正棱柱的组合体,常

6、以外接形态居多。下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法。设正三棱柱111CBAABC的高为h,底面边长为a,如图2 所示,D和1D分别为上下底面的中心。根据几何体的特点,球心必落在高1DD的中点O,aADRAOhOD33,2,借助直角三角形AOD的勾股定理,可求22332ahR。例 3 正四棱柱1111ABCDA B C D的各顶点都在半径为R的球面上, 则正四棱柱的侧面积有最值, 为 . 5 2 球与锥体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关

7、问题. 2.1 球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系。如图 4,设正四面体ABCS的棱长为a,内切球半径为r,外接球的半径为R,取AB的中点为D,E为S在底面的射影, 连接SESDCD,为正四面体的高。在截面三角形SDC, 作一个与边SD和DC相切, 圆心在高SE上的圆,即为内切球的截面。因为正四面体本身的对称性可知,外接球和内切球的球心同为O。此时,,33,32,aCEaSErOEROSCO则有2222233aRraRrCE,=,解得:66,.412Ra ra这个解法是通过利用两心合一的思路,建立

8、含有两个球的半径的等量关系进行求解. 同时我们可以发现,球心O为正四面体高的四等分点. 如果我们牢记这些数量关系,可为解题带来极大的方便.例 4 将半径都为的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.32 63 B. 2+263 C. 4+263 D. 4 32 636 球的外切正四面体,这个小球球心与外切正四面体的中心重合,而正四面体的中心到顶点的距离是中心到地面距离的 3 倍.2.2 球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体。常见两种形式:

9、一是三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心。如图5,三棱锥111DABA的外接球的球心和正方体1111DCBAABCD的外接球的球心重合,设aAA1,则aR23。二是如果三棱锥的三条侧棱互相垂直且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心,4422222lcbaR(l为长方体的体对角线长)。例 5 在正三棱锥SABC中,MN、分别是棱SCBC、的中点,且AMMN, 若侧棱2 3SA, 则正三棱锥ABCS外接球的表面积是。7 2.3 球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的

10、各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解 . 二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积. 例 6 在三棱锥 PABC中, PA PB=PC=3, 侧棱 PA与底面 ABC所成的角为60, 则该三棱锥外接球的体积为() A B.3 C. 4D.432.4 球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法、等进行求解。例如,四面体都是直角三角形的三棱锥,可利用直角

11、三角形斜边中点几何特征,巧定球心位置。如图 8,三棱锥ABCS, 满足SA面ABC,BCAB,取SC的中点为O,由直角三角形的性质可得:OCOBOSOA, 所以O点为三棱锥ABCS的外 接球的球心 , 则2SCR.8 例 7 矩形ABCD中,4,3,ABBC沿AC将矩形ABCD折成一个直二面角BACD, 则四面体ABCD的外接球的体积是( ) A.12125 B.9125 C.6125 D.31253 球与球对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题

12、求解. 例 8 在半径为的球内放入大小相等的4 个小球,则小球的半径的最大值为()4 球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解. 如与正四面体各棱都相切的球的半径为相对棱的一半:24ra. 9 例 8 把一个皮球放入如图10 所示的由8 根长均为20 cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8 根铁丝都有接触点,则皮球的半径为()A.cm310 B. cm10 C. cm210 D. cm30综合上面的四种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过

13、作截面来解决 . 如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径发挥好空间想象力,借助于数形结合进行转化,问题即可得解如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解, 此时结论的记忆必须准确. 外接球内切球问题1. (陕西理) 一个正三棱锥的四个顶点都在半径为1 的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A433 B33 C43 D123答案B2. 直三棱柱111ABCA B C的各顶点都在同一球面上,若12

14、ABACAA,120BAC,则此球的表面积等于。解: 在ABC中2ABAC,120BAC, 可得2 3BC, 由正弦定理 ,可得ABC外接圆半径r=2, 设此10 圆圆心为O,球心为O,在RT OBO中,易得球半径5R,故此球的表面积为2420R.3正三棱柱111ABCA B C内接于半径为2的球,若,A B两点的球面距离为,则正三棱柱的体积为答案 8 4. 表面积为2 3的正八面体的各个顶点都在同一个球面上,则此球的体积为A23 B13 C23 D2 23答案A 【解析】此正八面体是每个面的边长均为a的正三角形, 所以由2382 34a知,1a, 则此球的直径为2,故选 A。5. 已知正方体

15、外接球的体积是332,那么正方体的棱长等于()A.22 B.332 C.324 D.334答案 D 6. (山东卷) 正方体的内切球与其外接球的体积之比为 ( ) A. 13 B. 13 C. 1 33 D. 19 答案C 7. (海南、宁夏理科)一个六棱柱的底面是正六边形,其侧棱垂直底面已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为答案348. (天津理) 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为答案149. (全国理) 一个正四棱柱的各个顶点在一个直径为2 cm 的球面上。如果正四棱柱的底面

16、边长为1 cm,那么该棱柱的表面积为 cm2.答案24 2A B C P D E F 11 10. (辽宁) 如图,半径为2 的半球内有一内接正六棱锥PABCDEF,则此正六棱锥的侧面积是_答案6 711. (辽宁省抚顺一中)棱长为2 的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形 ( 正四面体的截面) 的面积是 .答案212. (枣庄一模)一个几何体的三视图如右图所示,则该几何体外接球的表面积为()A3B2C316D以上都不对答案 C 13.( 吉林省吉林市) 设正方体的棱长为233,则它的外接球的表面积为()A38 B2 C4D34答案 C 14(新课标理)已知三棱锥SABC的所有顶点都在球O的求面上 ,ABC是边长为1的正三角形 ,SC为球O的直径 , 且2SC;则此棱锥的体积为()A26B36C23D2212 15(辽宁文)已知点 P,A,B,C,D是球 O表面上的点 ,PA平面 ABCD, 四边形 ABCD 是边长为 23正方形 . 若 PA=26,则 OAB的面积为 _.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 资格认证/考试 > 其它考试类文档

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号