《上海市2018-2019学年高二下学期期末考试复习卷数学试题(原卷版)》由会员分享,可在线阅读,更多相关《上海市2018-2019学年高二下学期期末考试复习卷数学试题(原卷版)(5页珍藏版)》请在金锄头文库上搜索。
1、2018学年第二学期高二年级期末复习卷一、填空题1. 分别和两条异面直线相交的两条直线的位置关系是_2. 将一个总体分为A、B、C三层,其个体数之比为5:3:2,若用分层抽样方法抽取容量为100的样本,则应从C中抽取_个个体3. 圆柱的高为1,侧面展开图中母线与对角线的夹角为60,则此圆柱侧面积是_4. 若对任意实数,都有,则_5. 设地球O的半径为R,P和Q是地球上两地,P在北纬45,东经20,Q在北纬,东经110,则P与Q两地的球面距离为_6. 若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出同学中男女生均不少于1名的概率是_.7. 若RtABC的斜边AB=5,BC=3
2、,BC在平面内,A在平面内的射影为O,AO=2,则异面直线AO与BC之间的距离为_8. 在正四面体OABC中,D为BC的中点,E为AD的中点,则_(用表示)9. 用1、2、3、4、5、6六个数字组成的没有重复数字的六位数,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是_10. 已知向量,若向量、的夹角为钝角,则实数的取值范围是_11. 把10个相同的小球全部放入编号为1,2,3的三个盒子中,要求每个盒子中的小球数不小于盒子的编号数,则不同的方法共有_种12. 若的展开式中,奇数项的系数之和为-121,则n=_二、选择题13. 若为两条异面直线外的任意一点,则()A. 过点
3、有且仅有一条直线与都平行B. 过点有且仅有一条直线与都垂直C 过点有且仅有一条直线与都相交D. 过点有且仅有一条直线与都异面14. 给出下列三个命题:(1)如果一个平面内有无数条直线平行于另一个平面,则这两个平面平行;(2)一个平面内的任意一条直线都与另一个平面不相交,则这两个平面平行;(3)一个平面内有不共线的三点到另一个平面的距离相等,则这两个平面平行;其中正确命题的个数是A. 0B. 1C. 2D. 315. 考察正方体6个面中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于A. B. C. D. 16. 在发生某公
4、共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A. 甲地:总体均值为3,中位数为4B. 乙地:总体均值为1,总体方差大于0C. 丙地:中位数为2,众数为3D. 丁地:总体均值为2,总体方差为3三、解答题17. 某小组10名学生参加一次数学竞赛的成绩分别为:92、77、75、90、63、84、99、60、79、85,求总体平均数、中位数m、方差2和标准差;(列式并计算,结果精确到0.1)18. (1)设k,且,求证:;(2)求满足的正整数n的最大值;19.
5、 已知展开式中,末三项的二项式系数的和等于121;(1)求n的值;(2)求展开式中系数最大的项;20. 在棱长为a的正方体ABCD-A1B1C1D1中,E是棱DD1的中点:(1)求点D到平面A1BE的距离;(2)在棱上是否存在一点F,使得B1F平面A1BE,若存在,指明点F的位置;若不存在,请说明理由21. 如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径ADBC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为(1)求圆锥的侧面积;(2)求异面直线AB与SD所成角的大小;(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小本试卷的题干、答案和解析均由组卷网()专业教师团队编校出品。登录组卷网可对本试卷进行单题组卷、细目表分析、布置作业、举一反三等操作。试卷地址:在组卷网浏览本卷组卷网是学科网旗下的在线题库平台,覆盖小初高全学段全学科、超过900万精品解析试题。关注组卷网服务号,可使用移动教学助手功能(布置作业、线上考试、加入错题本、错题训练)。 学科网长期征集全国最新统考试卷、名校试卷、原创题,赢取丰厚稿酬,欢迎合作。钱老师QQ:537008204曹老师QQ:713000635 5