文档详情

电力电缆故障探测基础

大米
实名认证
店铺
DOC
78.50KB
约15页
文档ID:509403686
电力电缆故障探测基础_第1页
1/15

word第一章 电力电缆故障探测根底 §1-1 概述     电力电缆供电以其安全、可靠、有利于美化城市与厂矿布局等优点,获得了越来越广泛的应用尤其是近几年来新开发区的建设、旧城的改造中,掀起了架空线入地的高潮城市中电缆的用量迅速增加    电力电缆〔以下简称电缆〕多埋于地下,一旦发生故障,寻找起来十分困难,往往要花费数小时,甚至几天的时间,不仅浪费了大量的人力、物力,而且会造成难以估量的停电损失如何准确、迅速、经济地查寻电缆故障便成了供电部门日益关注的问题    电缆故障情况与埋设环境比拟复杂,变化多,测试人员应熟悉电缆的埋设走向与环境,确切地判断出电缆故障性质,选择适宜的仪器与测量方法,按照一定的程序工作,才能顺利地测出电缆故障点    电缆故障探测有其固有的特点,现场测试人员曾形象地说探测电缆故障点“七分靠仪器,三分靠人〞,说明单纯地靠购置先进仪器是不能解决问题的要重视操作人员的培训工作,生产单位和使用部门要经常交流信息、积累经验,加强电缆故障探测技术的研讨,以促进我国电缆故障探测技术整体水平的提高 §1-2 电缆故障的原因     了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

    电缆故障的原因大致可归纳为以下几类:    〔1〕机械损伤    机械损伤引起的电缆故障占电缆事故很大的比例据某某的资料统计,外力机械损伤引发的故障比例有些机械损伤很轻微,当时并没有造成故障,但在几个月甚至几年后损伤部位才开展成故障造成电缆机械损伤的主要有以下几种原因:    1〕安装时损伤:在安装时不小心碰伤电缆,机械牵引力过大而拉伤电缆,或电缆过度弯曲而损伤电缆;    2〕直承受外力损坏:在安装后电缆路径上或电缆附近进展城建施工,使电缆受到直接的外力损伤;    3〕行驶车辆的震动或冲击性负荷会造成地下电缆的铅(铝)包裂损;    4〕因自然现象造成的损伤:如中间接头或终端头内绝缘胶膨胀而胀裂外壳或电缆护套;因电缆自然行程使装在管口或支架上的电缆外皮擦伤;因土地沉降引起过大拉力,拉断中间接头或导体    〔2〕绝缘受潮    绝缘受潮后引起故障造成电缆受潮的主要原因有:    1〕因接头盒或终端盒结构不密封或安装不良而导致进水;    2〕电缆制造不良,金属护套有小孔或裂缝;    3〕金属护套因被外物刺伤或腐蚀穿孔;〔3〕绝缘老化变质    电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。

当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降    过热会引起绝缘老化变质电缆内部气隙产生电游离造成局部过热,使绝缘碳化电缆过负荷是电缆过热很重要的因素安装于电缆密集地区、电缆沟与电缆隧道等通风不良处的电缆、穿在枯燥管中的电缆以与电缆与热力管道接近的局部等都会因本身过热而使绝缘加速损坏   〔4〕过电压    大气与内部过电压作用,使电缆绝缘击穿,形成故障,击穿点一般是存在缺陷          〔5〕设计和制作工艺不良    中间接头和终端头的防水、电场分布设计不周密,材料选用不当,工艺不良、不按规程要求制作会造成电缆头故障   〔6〕材料缺陷    材料缺陷主要表现在三个方面一是电缆制造的问题,铅〔铝〕护层留下的缺陷;在包缠绝缘过程中,纸绝缘上出现褶皱、裂损、破口和重叠间隙等缺陷;二是电缆附件制造上的缺陷,如铸铁件有砂眼,瓷件的机械强度不够,其它零件不符合规格或组装时不密封等;三是对绝缘材料的维护管理不善,造成电缆绝缘受潮、脏污和老化   〔7〕护层的腐蚀    由于地下酸碱腐蚀、杂散电流的影响,使电缆铅包外皮受腐蚀出现麻点、开裂或穿孔,造成故障。

   〔8〕电缆的绝缘物流失    油浸纸绝缘电缆敷设时地沟凸凹不平,或处在电杆上的户外头,由于起伏、上下落差悬殊,高处的绝缘油流向低处而使高处电缆绝缘性能下降,导致故障发生    在分析电缆故障发生的原因以与寻找故障点时,极重要的是要特别注意了解高压电缆敷设、故障与修复的情况要注意做好电缆安装敷设与故障修复过程中的记录工作记录应主要包括以下内容:    1〕线路名称与起止地点    2〕故障发生时间    3〕故障发生的地点与排除经过    4〕电缆规X:如电压等级、型式、导体截面、绝缘方式,制造厂名与购置日期等    5〕装置记录:如安装日期与气候,各个对接头、三通接头的设计型式、绝缘种类、热处理温度与准确位置    6〕电缆的埋设情况:如电缆弯曲半径的大小,路径的走向,有无反常的敷设深度或者有特别的保护措施,如钢板、穿管和排管等;电缆敷设中的技工和技术人员的某某〔这也常常是提供重要线索的来源之一〕    7〕周围环境情况:如临近故障处的地面情况,有无新的挖土、打桩或埋管等工程,泥土中有无酸或碱的成分,是否夹有小石块,附近地区有无化学工厂等    8〕运行情况:如电缆线路负荷与温度等。

    9〕校验情况:包括试验电压、时间、泄漏电流与绝缘电阻的数值、历史记录    由于制造缺陷而造成的电缆故障是不多的,分析了解可能造成电缆故障的原因,对寻找电缆故障点是很有帮助的例如,通过测距知道了电缆的故障距离,而在对应位置上,发现近期进展过城建施工,就可以怀疑为在施工的过程中损伤了被测电缆而引起了故障,往往不需要费很大功夫,就能很快地对故障进展定点 §1-3 电缆故障的性质与分类     电缆故障从型式上可分为串联与并联故障串联故障指电缆一个或多个导体〔包括铅、铝外皮〕断开;通常在电缆至少一个导体断路之前,串联故障是不容易发现的并联故障是导体对外皮或导体之间的绝缘下降,不能承受正常运行电压实际的故障型式组合是很多的,图1.1给出了可能性较大的几种故障形式例如:图1.1.c所示,导体断路往往是电缆故障电流过大而烧断的,这种故障一般伴有并联接地或相间绝缘下降的情况实际发生的故障绝大局部是单相对地绝缘下降故障                                               a. 一相对地                                                b. 两相对地                                                          几种电缆故障形式    电缆故障点可用图1.2所示电路来等效。

Rf代表绝缘电阻,G是击穿电压为Vg的击穿间隙,Cf代表局局部布电容,上述三个数值随不同的故障情况变化很大,并且互相之间并没有必然的联系                                                         电缆故障等效电路    间隙击穿电压Vg的大小取决于放电通道的距离,电阻Rf的大小取决于电缆介质的损伤程度,而电容Cf的大小取决于故障点受潮的程度,数值很小,一般可以忽略    根据故障电阻与击穿间隙情况,电缆故障可分为开路、低阻、高阻与闪络性故障,如表1.1所示                                                           表1.1 电缆故障性质的分类        故障性质 Rf间隙的击穿情况 开 路 ∞  在直流或高压脉冲作用下击穿 低 阻小于10Z0Rf不是太低时,可用高压脉冲击穿 高 阻大于10Z0高压脉冲击穿 闪 络 ∞  直流或高压脉冲击穿                                说明:表中Z0为电缆的波阻抗值,电力电缆波阻抗一般在10-40Ω之间    以上分类的目的也是为了选择测试方法的方便,根据目前流行的故障测距技术,开路与低阻故障可用低压脉冲反射法,高阻故障要用冲击闪络法,而闪络性故障可用直流闪络法测试。

以上几种故障都可以用二次脉冲法测试,这是目前世界上最先进的故障测试技术,国外以德国、奥地利为代表,国内如此以某某信易杰电气公司为代表现场人员有把Rf<100KΩ的故障称为低阻故障的习惯,主要是因为传统的电桥法可以测量这类故障    据统计,高阻与闪络性故障约占整个电缆故障总数的90%    现场上是通过试验方法区分高阻与闪络性故障的    图1.3给出了电缆耐压试验等效电路,其中Rs为试验设备内阻,E为设备所能提供的直流电压值,电阻Rf与临界击穿电压为Vg的间隙并联代表故障点                                                            电缆耐压试验等效电路    由图1.3可知,在对电缆进展高压绝缘试验时,电缆故障点所能获得的电压为:                                                              对闪络性故障来说Rf较大,故障间隙两端电压可以增加至很高,当试验电压升至某一值时,故障点击穿放电,电流突然升高,电压突然下降预防性试验中发生的故障多属闪络性故障高阻故障的故障点电阻Rf较小〔但大于10Z0〕,导致故障点两端所加电压不能升至高于故障点击穿电压,也就不能使故障点击穿。

因此,可以从在对电缆进展高压绝缘试验时有无故障点击穿现象判断电缆存在高阻还是闪络性故障显然,高阻与闪络性故障的区分不是绝对的,它与高压试验设备的容量或试验设备的内阻等因素有关    实际上还存在一种封闭性故障,它多发生于电缆接头或终端头内,特别是多发生在浸油的电缆头内发生这类故障时,有时在某一试验电压下绝缘击穿,待绝缘恢复,击穿现象便完全消失,这类故障称为封闭性故障,因故障不能再现,寻找起来就比拟困难 §1-4 电缆故障探测的步骤     电缆故障的探测一般要经过诊断、测距、定点三个步骤    1. 电缆故障性质诊断    电缆故障性质的诊断,即确定故障的类型与严重程度,以便于测试人员对症下药,选择适当的电缆故障测距与定点方法  2. 电缆故障测距    电缆故障测距,又叫粗测,在电缆的一端使用仪器确定故障距离,现场上常用的故障测距方法有古典电桥法与现代行波法〔见§1-6节〕    3. 电缆故障定点    电缆故障定点,又叫精测,即按照故障测距结果,根据电缆的路径走向,找出故障点的大体方位来,在一个很小的X围内,利用放电声测法或其它方法确定故障点的准确位置        一般来说,成功的电缆故障探测都要经过以上三个步骤,否如此欲速如此不达。

例如不进展故障测距而利用放电声测法直接定点,沿着很长的电缆路径〔可能有数公里长〕,探测故障点放电声是相当困难的如果电缆故障距离,确定出一个大体方位来,在很小的一个X围内〔10米左右〕来回移动定点仪器探测电缆故障点放电声,就容易多了 §1-5 电缆故障性质的诊断     所谓诊断电缆故障的性质,就是指确定:故障电阻是高阻还是低阻;是闪络还是封闭性故障;是接地、短路、断线,还是它们的混合;是单相、两相,还是三相故障    可以根据故障发生时出现的现象,初步判断故障的性质例如,运行中的电缆发生故障时,假如只是给了接地信号,如此有可能是单相接地的故障继电保护过流继电器动作,出现跳闸现象,如此此时可能发生了电缆两相或三相短路或接地故障,或者是发生了短路与接地混合故障发生这些故障时,短路或接地电流烧断电缆将形成断线故障但通过上述判断不能完全将故障的性质确定下来,还必须测量绝缘电阻和进展“导通。

下载提示
相似文档
正为您匹配相似的精品文档