文档详情

初中数学大招-77 手拉手模型构造全等三角形

飞****
实名认证
店铺
DOCX
458.03KB
约16页
文档ID:612823148
初中数学大招-77 手拉手模型构造全等三角形_第1页
1/16

手拉手模型构造全等三角形【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型知识总结】【基本模型】一、等边三角形手拉手-出全等 图1 图2 [来源:]图3 图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:[来源:Z#xx#k.Com]①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE; 图1 图2 图3 图41、如图,点C段AB上,△DAC和△DBE都是等边三角形,求证:△DAB≌△DCE;DA∥EC.解析:(1)△DAC和△DBE都是等边三角形.∴DA=DC,DB=DE,∠ADC=∠BDE=60°.∴DA=DC,DB=DE,∠ADC=∠BDE=60°∴∠ADC+∠CDB=∠BDE+∠CDB,(重点)即∠ADB=∠CDE在△DAB和△DCE中,DA=DC∠ADB=∠CDEDB=DE∴△DAB≌△DCE.(2)∵△DAB≌△DCE∴∠A=∠DCE=60°∵∠ADC=60°∴∠DCE=∠ADC∴DA∥EC.2、已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连结AE,BD交于点O,AE与DC交于点0,AE与DC交于点M,BD与AC交于点N.解析:∵△ACB和△DCE都是等腰三角形∠ACB=∠DCE=90°∴AC=BC,DC=EC∴∠ACB+∠ACD=∠DCE+∠ACD∴∠BCD=∠ACE在△ACE和△BCD中AC=BC∠ACE=∠BCDCE=CD∴△ACE≌△BCD(SAS)∴AE=BD3、已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,⑴若点P在△ABC内部,求证BQ=CP;⑵若点P在△ABC外部,以上结论还成立吗?解析:(1)∵∠QAP=∠BAC∴∠QAP-∠BAP=∠BAC-∠BAP[来源:Z#xx#k.Com]即∠QAB=∠PAC另由旋转得AQ=AP在△AQB和△APC中AQ=AP∠QAB=∠PACAB=AC∴△AQB≌△APC∴BQ=CP(2)∵∠QAP=∠BAC∴∠QAP+∠BAP=∠BAC+∠BAP[来源:]即∠QAB=∠PAC另由旋转得AQ=AP在△AQB和△APC中AQ=AP∠QAB=∠PACAB=AC∴△AQB≌△APC∴BQ=CP4、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=2,AG=1,则EB=________________.解析:连接BD交于AC于点O,∵四边形ABCD、AGFE是正方形∴AB=AD,AE=AG,∠DAB=∠EAG∴∠EAB=∠GAD在△AEB和△AGD中AE=AG∠EAB=∠GADAB=AD∴△EAB≌△GAD(SAS)∴EB=GD∵四边形ABCD是正方形,AB=2∴BD⊥AC,AC=BD=2AB=2∴∠DOG=90°,OA=OD=12BD=1∵AG=1∴OG=OA+AG=2∴GD=5,EB=55、已知正方形ABCD和正方形AEFG有一个公共点,点G、E分别段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由。

解析:连接BE∵四边形ABCD和四边形AEFG都是正方形∴AB=AD,AE=AG,∠BAD=∠EAG=90°∴∠BAD-∠BAG=∠EAG-∠BAG,即∠DAG=∠BAEAB=AD∠DAG=∠BAEAE=AG∴△BAE≌△DAG(SAS)∴BE=DG6、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠BDC=45°;④BE2=2AD2+AB2其中结论正确的个数是_______解析:①∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠BAD=∠CAE∵在△BAD和△CAE中AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE②∵△BAD≌△CAE[来源:Z&xx&k.Com]∴∠ABD=∠ACE∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=90°则BD⊥CE③∵△ABC为等腰直角三角形∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵∠ABD=∠ACE∴∠ACE+∠DBC=45°④∵BD⊥CE∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2∵△ADE为等腰三角形,∴DE=2AD即DE2=2AD2∴BE2=BD2+DE2=BD2+2AD2 手拉手模型构造全等三角形1、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.解:(1)∵△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,∴AC=BC=4,AB=AC=4,DE=BE,DB=BE,∠ABC=45°,∠DBE=45°,∵AB=2BD,∴AD=BD=2,∴BE=2,∵∠CBE=∠ABC+∠DBE=90°,∴CE===2,∵点F是CE的中点,∴BF=CE=;(2)如图,连接AN,设DE与AB交于点H,∵点M是AD中点,∴AM=MD,又∵MN=ME,∠AMN=∠DME,∴△AMN≌△DME(SAS),∴AN=DE,∠MAN=∠ADE,[来源:学#科#网]∴AN∥DE,∴∠NAH+∠DHA=180°,∵∠NAH=∠NAC+∠CAB=∠NAC+45°,∠DHA=∠EDB+∠DBH=45°+∠DBH,∴∠NAC+45°+45°+∠DBH=180°,∴∠NAC+∠DBH=90°,∵∠CBA+∠DBE=45°+45°=90°,∴∠CBE+∠DBH=90°,∴∠CBE=∠NAC,又∵AC=BC,AN=DE=BE,∴△ACN≌△BCE(SAS),∴∠ACN=∠BCE,∵∠BCE+∠ACE=90°,∴∠ACN+∠ACE=90°=∠NCE,∴CN⊥CE.2、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.(1)求BC的长;(2)求证∠ABE=∠ABC;(3)当FB=FE时,求CD的长.解:(1)如图,过点A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH=BC,∵tan∠ACB==,∴设AH=3k(k>0),CH=4k,∵AC2=AH2+CH2,∴9k2+16k2=25,∴k=1,∴HC=4,∴BC=2CH=8;(2)∵∠DAE=∠BAC,∴∠DAC=∠BAE,∵将线段AD绕点A顺时针旋转得AE,∴AE=AD,又∵AB=AC,∴△AEB≌△ADC(SAS),∴∠ABE=∠ACD,∵AB=AC,∴∠ABC=∠ACD,∴∠ABE=∠ABC;(3)∵AD=AE,∴∠AED=∠ADE=(180°﹣∠DAE),∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC),∵∠DAE=∠BAC,∴∠ADE=∠AED=∠ABC=∠ACB,∴∠ABE=∠ABC=∠ADE,又∵∠BFE=∠DFA,∴∠BEF=∠DAF,∵FB=FE,∴∠FBE=∠FEB,∴∠DAF=∠ADF=∠FBE=∠FEB,∴∠DAF=∠ABC=∠ACB,[来源:学.科.网]又∵∠ABC=∠ABD,∴△BAD∽△BCA,∴∴BD==,∴CD=BC﹣BD=8﹣=.3、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.解:(1)由旋转可得EC=DC,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS);(2)由(1)可知AE=BD=1,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴,∴.∴;(3)如图,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即=,∵点F为AD的中点,∴FA=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得:BD=AE,∴FG=AE,即=,∴=,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.4、如图,△ABC和△EDC都是等腰直角三角形,C为它们的公共直角顶点,连接AD、BE,点F为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,试判断线段BE、CF的关系,并证明你的结论;(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变时,请探究BE、CF的关系并直接写出结论.解:(1)结论:BE=2CF,BE⊥CF.理由:∵△ABC和△DEC都是等腰直角三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=90°,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD,∠EBC=∠DAC,∵F为线段AD的中点,∴CF=AF=DF=AD∴BE=2CF;∵AF=CF,∴∠DAC=∠FCA,∵∠BCF+∠ACF=90°,∴∠BCF+∠EBC=90°,即BE⊥CF;(2)旋转一个锐角后,(1)中的关系依然成立.证明:如图2,延长CF到M,使FM=FC,连接AM,DM,又AF=DF,∴四边形AMDC为平行四边形∴AM=CD=CE,∠MAC=180°﹣∠ACD,[来源:Z。

xxk.Com]∠BCE=。

下载提示
相似文档
正为您匹配相似的精品文档