文档详情

2023-2023学年高中数学 第二章 参数方程 2.4 平摆线和渐开线课件 北师大版选修4-4

千****8
实名认证
店铺
PPT
13.75MB
约28页
文档ID:358156142
2023-2023学年高中数学 第二章 参数方程 2.4 平摆线和渐开线课件 北师大版选修4-4_第1页
1/28

44平摆线和渐开线平摆线和渐开线一二一、平摆线1.平摆线(旋轮线)一个圆在平面上沿着一条直线无滑动地滚动时,我们把圆周上肯定点的运动轨迹叫作平摆线(或旋轮线),如图.2.平摆线(旋轮线)的参数方程半径为r的圆在x轴上滚动,起点为原点O,它的平摆线的参数方程为一二3.平摆线的性质当圆滚动半周时,过定点M的半径转过的角度是,点M到达最高点(r,2r),再滚动半周,点M到达(2r,0),这时圆周和x轴又相切于点M,得到平摆线的一拱.圆滚动一周时,平摆线消灭一个周期.平摆线上点的纵坐标最大值是2r,最小值是0,即平摆线的拱高为2r.一二名师点拨1.摆线的特征圆的摆线每一拱的宽度等于圆的周长,拱高等于圆的直径(摆线在它与定直线的两个相邻交点之间的部分叫作一个拱).2.圆的平摆线的参数方程中参数的几何意义依据圆的平摆线的定义和建立参数方程的过程,可以知道其中的字母r是指圆的半径,参数是过圆周上点M的半径与过圆与x轴切点的半径的夹角.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的简略情况.一二答案:C 一二二、渐开线1.渐开线、基圆把一条没有弹性的细绳绕在一个固定圆盘的圆周上,将铅笔系在绳的外端,把绳拉紧逐渐地展开,要求绳的拉直部分和圆保持相切,此时,铅笔尖所画出的曲线称为此圆的渐开线,此圆称为渐开线的基圆,如图所示.一二 2.渐开线的参数方程 半径为r的圆的渐开线的参数方程是名师点拨1.圆的渐开线的特征(1)圆的渐开线的实质是直线在圆上滚动时直线上定点的轨迹.(2)发生线沿基圆滚过的长度,等于基圆上被滚过的圆弧长度.(3)基圆大小不等的渐开线外形不同,一般基圆越大,它的渐开线越趋平直.(4)基圆以内无渐开线.一二2.圆的渐开线的参数方程中参数的几何意义依据渐开线的定义和求解参数方程的过程,可知其中的字母r是指基圆的半径,而参数是指绳子外端运动时,半径OB相对于Ox转过的角度,如图所示,其中的AOB即是角.显然点P由参数唯一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐标转化为与三角函数有关的问题,使求解过程更加简洁.一二做一做2半径为1的圆的渐开线的参数方程为()答案:C 一二思考辨析推断下列说法是否正确,正确的在后面的括号内打“”,错误的打“”.(1)只有圆才有渐开线.()(2)渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才能得到不同的图形.()(3)对于同一个圆,如果建立的直角坐标系的位置不同,那么画出的渐开线外形就不同.()(4)在求圆的平摆线和渐开线方程时,如果建立的坐标系原点和坐标轴选取不同,那么可能会得到不同的参数方程.()探究一探究二探究三思维辨析求平摆线的参数方程求平摆线的参数方程【例1】已知一个圆的平摆线过肯定点(2,0),请写出该圆的半径最大时该平摆线的参数方程.分析:依据圆的平摆线的参数方程 (-0,即得cos=1,所以=2k(kZ).代入x=r(-sin),得x=r(2k-sin 2k).又由于x=2,所以r(2k-sin 2k)=2,探究一探究二探究三思维辨析反思领悟1.圆的平摆线的实质是一个圆沿着一条定直线无滑动地滚动时,圆周上一个定点的轨迹.2.在圆的平摆线中,圆周上定点M的位置也可以由圆心角唯一确定.探究一探究二探究三思维辨析变式训练1 已知一个圆的平摆线过肯定点(1,0),请写出该摆线的参数方程.探究一探究二探究三思维辨析求渐开线的参数方程求渐开线的参数方程【例2】有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为32 mm,求齿廓线的渐开线的参数方程.解:由于基圆的直径为32 mm,所以基圆的半径为16 mm,因此齿廓线的渐开线的参数方程为探究一探究二探究三思维辨析反思领悟解决此类问题的关键是依据渐开线的形成过程,将问题归结到用向量知识和三角的有关知识建立等式关系.用向量方法建立运动轨迹曲线的参数方程的过程和步骤:(1)建立合适的坐标系,设轨迹曲线上的动点为M(x,y);(2)取定运动中产生的某一角度为参数;(3)用三角、几何知识写出相关向量的坐标表达式;(4)用向量运算得到M(x,y)的坐标表达式,由此得到轨迹曲线的参数方程.探究一探究二探究三思维辨析变式训练2 已知圆的直径为2,其渐开线上两点A,B对应的标准形式的参数方程中的参数分别是 ,求A,B两点的坐标.探究一探究二探究三思维辨析平摆线、渐开线参数方程的应用平摆线、渐开线参数方程的应用【例3】导学号64470043设圆的半径为8,沿x轴正向滚动,开头时圆与x轴相切于原点O,记圆上动点为M,它随圆的滚动而转变位置,写出圆滚动一周时M点的轨迹方程,画出相应曲线,求此曲线上点的纵坐标y的最大值,说明该曲线的对称轴.分析:本题考查摆线的参数方程的求法及应用.解答本题需要先分析题意,弄清M点的轨迹的外形,然后借助图像求得最值.解:依据题意,得轨迹曲线的参数方程为当t=,即x=8时,y有最大值16.曲线的对称轴为直线x=8.探究一探究二探究三思维辨析反思领悟摆线的参数方程是三角函数的形式,可考虑其性质与三角函数的性质有类似的地方.探究一探究二探究三思维辨析变式训练3 设摆线 (t为参数,0t2)与直线y=1相交于A,B两点,求A,B两点间的距离.探究一探究二探究三思维辨析因不理解平摆线的定义而致误典例圆的半径为r,沿x轴正向滚动,圆与x轴相切于原点O.圆上点M起始处沿顺时针已偏转角.试求点M的轨迹方程.错解以原点为圆心,相互垂直的两条直径分别为x轴和y轴,建立直角坐标系,设M(x,y),则有x=rcos,y=rsin,所以x2+y2=r2.探究一探究二探究三思维辨析纠错心得1.渐开线的实质是直线在圆上滚动时直线上定点的轨迹.圆的摆线的实质是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.2.渐开线上任一点M的坐标由圆心角(以弧度为单位)唯一确定,而在圆的摆线中,圆周上定点M的位置也可以由圆心角唯一确定.探究一探究二探究三思维辨析变式训练如果半径为3的圆的平摆线上某点对应的参数=,那么该点的坐标为.1 2 3 41.平摆线 (0t2)与直线y=2的交点的直角坐标是()A.(-2,2)B.(3+2,2)C.(-2,2)或(3+2,2)D.(-3,5)答案:C 1 2 3 41 2 3 43.已知半径为3的圆的平摆线上某点的纵坐标为0,则其横坐标为.解析:r=3,平摆线的参数方程为 (为参数).令y=0,得cos=1.=2k(kZ),sin=0.x=3-3sin=6k(kZ).答案:6k(kZ)1 2 3 44.已知圆的方程为x2+y2=4,点P为其渐开线上一点,对应的参数=,则点P的坐标为.答案:(,2)。

下载提示
相似文档
正为您匹配相似的精品文档
相关文档