文档详情

20-平面解析几何(圆与方程)-五年(2018-2022)高考数学真题按知识点分类汇编-高考数学备考复习重点资料归纳汇总

旭***
实名认证
店铺
DOCX
2.25MB
约36页
文档ID:352385901
20-平面解析几何(圆与方程)-五年(2018-2022)高考数学真题按知识点分类汇编-高考数学备考复习重点资料归纳汇总_第1页
1/36

五年2018-2022高考数学真题按知识点分类汇编20-平面解析几何(圆与方程)(含解析)一、单选题1.(2022·北京·统考高考真题)若直线是圆的一条对称轴,则(    )A. B. C.1 D.2.(2021·北京·统考高考真题)已知直线(为常数)与圆交于点,当变化时,若的最小值为2,则    A. B. C. D.3.(2020·全国·统考高考真题)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为(    )A. B. C. D.4.(2020·全国·统考高考真题)若直线l与曲线y=和x2+y2=都相切,则l的方程为(    )A.y=2x+1 B.y=2x+ C.y=x+1 D.y=x+5.(2020·全国·统考高考真题)已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为(    )A. B. C. D.6.(2020·全国·统考高考真题)已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为(    )A.1 B.2C.3 D.47.(2020·北京·统考高考真题)已知半径为1的圆经过点,则其圆心到原点的距离的最小值为(    ).A.4 B.5 C.6 D.78.(2020·山东·统考高考真题)已知圆心为的圆与轴相切,则该圆的标准方程是(    )A. B.C. D.9.(2018·全国·高考真题)直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.10.(2019·全国·专题练习)圆与圆的位置关系为A.内切 B.相交 C.外切 D.相离11.(2018·北京·高考真题)在平面直角坐标系中,记为点到直线的距离,当、变化时,的最大值为A. B.C. D.12.(2008·全国·高考真题)若直线通过点,则A. B. C. D.二、多选题13.(2021·全国·统考高考真题)已知点在圆上,点、,则(    )A.点到直线的距离小于B.点到直线的距离大于C.当最小时,D.当最大时,14.(2021·全国·统考高考真题)已知直线与圆,点,则下列说法正确的是(    )A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切15.(2020·海南·高考真题)已知曲线.(    )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为D.若m=0,n>0,则C是两条直线三、填空题16.(2022·全国·统考高考真题)写出与圆和都相切的一条直线的方程________________.17.(2022·全国·统考高考真题)过四点中的三点的一个圆的方程为____________.18.(2022·全国·统考高考真题)设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.19.(2022·全国·统考高考真题)若双曲线的渐近线与圆相切,则_________.20.(2022·全国·统考高考真题)设点M在直线上,点和均在上,则的方程为______________.21.(2022·天津·统考高考真题)若直线与圆相交所得的弦长为,则_____.22.(2021·天津·统考高考真题)若斜率为的直线与轴交于点,与圆相切于点,则____________.23.(2020·天津·统考高考真题)已知直线和圆相交于两点.若,则的值为_________.24.(2018·全国·高考真题)直线与圆交于两点,则________.25.(2019·北京·高考真题)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________.26.(2018·江苏·高考真题)在平面直角坐标系中,为直线上在第一象限内的点,,以为直径的圆与直线交于另一点.若,则点的横坐标为________.四、解答题27.(2021·全国·高考真题)抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.(1)求C,的方程;(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.28.(2021·全国·统考高考真题)在直角坐标系中,的圆心为,半径为1.(1)写出的一个参数方程;(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.29.(2021·全国·统考高考真题)已知抛物线的焦点为,且与圆上点的距离的最小值为.(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值.30.(2018·全国·高考真题)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.31.(2018·全国·高考真题)在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.32.(2018·全国·高考真题)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.33.(2019·北京·高考真题)已知抛物线C:x2=−2py经过点(2,−1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.34.(2018·江苏·高考真题)在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.五、双空题35.(2020·浙江·统考高考真题)设直线与圆和圆均相切,则_______;b=______.36.(2019·浙江·高考真题)已知圆的圆心坐标是,半径长是.若直线与圆相切于点,则_____,______.考答案:1.A【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.【详解】由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得.故选:A.2.C【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出【详解】由题可得圆心为,半径为2,则圆心到直线的距离,则弦长为,则当时,弦长取得最小值为,解得.故选:C.3.B【分析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.【详解】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.4.D【分析】根据导数的几何意义设出直线的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线在曲线上的切点为,则,函数的导数为,则直线的斜率,设直线的方程为,即,由于直线与圆相切,则,两边平方并整理得,解得,(舍),则直线的方程为,即.故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.5.D【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且,根据 可知,当直线时,最小,求出以 为直径的圆的方程,根据圆系的知识即可求出直线的方程.【详解】圆的方程可化为,点 到直线的距离为,所以直线 与圆相离.依圆的知识可知,四点四点共圆,且,所以,而 ,当直线时,, ,此时最小.∴即 ,由解得, .所以以为直径的圆的方程为,即 ,两圆的方程相减可得:,即为直线的方程.故选:D.【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.6.B【分析】当直线和圆心与点的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆化为,所以圆心坐标为,半径为,设,当过点的直线和直线垂直时,圆心到过点的直线的距离最大,所求的弦长最短,此时根据弦长公式得最小值为.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.A【分析】求出圆心的轨迹方程后,根据圆心到原点的距离减去半径1可得答案.【详解】设圆心,则,化简得,所以圆心的轨迹是以为圆心,1为半径的圆,所以,所以,当且仅当段上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.8.B【分析】圆的圆心为,半径为,得到圆方程.【详解】根据题意知圆心为,半径为,故圆方程为:.故选:B.9.A【详解】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.10.B【分析】试题分析:两圆的圆心距为,半径分别为 ,,所以两圆相交 .故选B. 考点:圆与圆的位置关系.11.C【分析】为单位圆上一点,而直线过点,则根据几何意义得的最大值为.【详解】为单位圆上一点,而直线过点,所以的最大值为,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.12.D【详解】依题意可得,点在单位圆上,所以直线与单位圆有交点,则圆心即原点到直线的距离,即,故选D13.ACD【分析】计算出圆心到直线的距离,可得出点到直线的距离的取值范围,可判断AB选项的正误;分析可知,当最大或最小时,与圆相切,利用勾股定理可判断CD选项的正误.【详解】圆的圆心为,半径为,直线的方程为,即,圆心到直线的距离为,所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;如下图所示:当最大或最小时,与圆相切,连接、,可知,,,由勾股定理可得,CD选项正确.故选:ACD.【点睛】结论点睛:若直线与半径为的圆相离,圆心到直线的距离为,则圆上一点到直线的距离的取值范围是.14.ABD【分析】转化点与圆、点与直线的位置关系为的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心到直线l的距离,若点在圆C上,则,所以,则直线l与圆C相切,故A正确;若点在圆C内,则,所以,则直线l与圆C相离,故B正确;若点在圆C外,则,所以,则直线l与圆C相交,故C错误;若点在直线l上,则即,所以,直线l与圆C。

下载提示
相似文档
正为您匹配相似的精品文档