核磁共振方法研究蛋白质结构

上传人:F****n 文档编号:99358446 上传时间:2019-09-18 格式:DOC 页数:7 大小:24.50KB
返回 下载 相关 举报
核磁共振方法研究蛋白质结构_第1页
第1页 / 共7页
核磁共振方法研究蛋白质结构_第2页
第2页 / 共7页
核磁共振方法研究蛋白质结构_第3页
第3页 / 共7页
核磁共振方法研究蛋白质结构_第4页
第4页 / 共7页
核磁共振方法研究蛋白质结构_第5页
第5页 / 共7页
点击查看更多>>
资源描述

《核磁共振方法研究蛋白质结构》由会员分享,可在线阅读,更多相关《核磁共振方法研究蛋白质结构(7页珍藏版)》请在金锄头文库上搜索。

1、核磁共振方法研究蛋白质结构 维特里希教授创建的方法是对水溶液中的蛋白质样品测定一系列不同的二维核磁共振图谱,然后根据已确定的蛋白质分子的一级结构,通过对各种二维核磁共振图谱的比较和解析,在图谱上找到各个序列号氨基酸上的各种氢原子所对应的峰。有了这些被指认的峰,就可以根据这些峰在核磁共振谱图上所呈现的相互之间的关系得到它们所对应的氢原子之间的距离。可以想象,正是因为蛋白质分子具有空间结构,在序列上相差甚远的两个氨基酸有可能在空间距离上是很近的,它们所含的氢原子所对应的NMR峰之间就会有相关信号出现。通常,如果两个氢原子之间距离小于0.5纳米的话,它们之间就会有相关信号出现。一个由几十个氨基酸残基

2、组成的蛋白质分子可以得到几百个甚至几千个这样与距离有关的信号,按照信号的强弱把它们转换成对应的氢原子之间的距离,然后运用计算机程序根据所得到的距离条件模拟出该蛋白质分子的空间结构。该结构既要满足从核磁共振图谱上得到的所有距离条件,还要满足化学上有关原子与原子结合的一些基本限制条件,如原子间的化学键长、键角和原子半径等。从1980年代初维特里希教授发展出这种方法至今,核磁共振技术在生物大分子的结构研究方面有了飞速的发展,一方面是由于仪器技术本身的发展,能够产生的磁场越来越强;计算机的计算速度也越来越快,更多地是由于实验方法上的创新和发展,由二维的核磁共振实验发展成三维甚至更多维的实验;借助于基因

3、技术可以得到同位素富集的蛋白质样品,核磁共振的实验也从原来单一的核发展到三种甚至四种核同时在一个实验中共振而产生相关信号。核磁共振方法的应用范围也从原来单一的蛋白质分子的空间结构研究发展到蛋白质动力学方面的研究,蛋白质与蛋白质、蛋白质与核酸以及小分子的相互作用和药物筛选中蛋白质分子与药物分子的结合等方面。随着人类基因组学和蛋白质组学研究的不断深入,蛋白质结构组学的研究也会随之兴起,核磁共振技术在这方面的应用会更多更广。这些应用的需求反过来也会促进核磁共振技术本身的进步和发展,使之更趋成熟和完善H-HCOSY是确定质子间偶合关系的有力工具,就这种作用来说,它相当于多次质子同核自旋去偶实验,但二者

4、各有长处。H-HCOSY中的相关峰(或称交叉峰)主要反映的是2J和3J偶合关系,偶尔会出现远程相关峰。TOCSY(全相关谱,TOtal Correlation Spectroscopy)可以找到同一偶合体系中所有氢核的相关信息,也就是说,从某一个氢核的信号出发,能找到与它处在同一个自旋系统中所有质子的相关峰。这是一种很有用的2DNMR技术。COSY通常只能看到相邻碳的氢的相关,(有时稍微远一点)。但是TOCSY顺着化学键可以看到相隔若干个碳的氢相关。因此TOCSY谱图繁杂得多,不过也确实很有用。所需要时间和COSY差不多。核磁共振ROESY和NOESY的区别及 适用范围核磁共振ROESY和NO

5、ESY的区别及 适用范围答案一: 在10003000用ROESY,小于1000大于3000用NOESY。答案二: ROESY是旋转坐标系下的NOESY。小分子的NOE是反相的,大分子是正相的。当分子量接近2000时,NOE趋于0。在旋转坐标系下NOE始终为正,故测2000左右的样品时须用ROESY。答案三:NOESY:Nuclear Overhauser Effect Spectroscopy 二维NOE谱ROESY:Rotating Frame Overhauser Effect Spectroscopy 旋转坐标系NOE谱相同点:1)都是二维核磁共振实验(包括同核和异核实验)。同核实验主要

6、有1H-1H COSY,TOCSY,E.COSY, NOESY,ROESY,relay-NOESY等实验,主要用于自旋体系(残基内部)的谱峰确认,耦合常数的测定,顺序识别,以及由NOE交叉峰的强度得出质子间距离约束条件。这也是非标记样品所能进行的主要实验。2)都是检测 H-H 的空间相关, 距离3.5-5 A ,可以考察化合物的立体结构;不同点:1)分子量在 1000-3000范围,建议使用 roesy;小于1000和大于3000的化合物宜做NOESY。2)noesy 是相敏图, 在对角峰附近的分辨率较差;3)roesy 得到的都是吸收谱, 因此有相信号点 (交叉峰) 距离对角峰近的可以考虑使

7、用 roesy。氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移,现在一般采用(CH3)4Si(四甲基硅烷TMS)为标准化合物,其化学位移值为0 ppm.处在不同环境中的氢原子因产生共振时吸收电磁波的频率不同,在图谱上出现的位置也不同,利用化学位移,峰面积和积分值以及耦合常数等信息,进而推测其在碳骨架上的位置.二维核磁共振波谱的基本原理 二维核磁共振谱的出现和发展,是近代核磁共振波谱学的最重要的里程碑。极大地方便了核磁共振的谱图解析。 二维核磁共振谱是有两个时间变量,经两次傅里

8、叶变换得到的两个独立的频率变量图一般把第二个时间变量t2表示采样时间,第一个时间变量t1则是与 t2无关的独立变量,是脉冲序列中的某一个变化的时间间隔。 二维核磁共振谱的特点是将化学位移、耦合常数等核磁共振参数展开在二维平面上,这样在一维谱中重叠在一个频率坐标轴上的信号分别在两个独立的频率坐标轴上展开,这样不仅减少了谱线的拥挤和重叠,而且提供了自旋核之间相互作用的信息。这些对推断一维核磁共振谱图中难以解析的复杂化合物结构具有重要作用。划分区域 一个二维核磁共振试验的脉冲序列一般可划分为下列几个区域: 预备期(preraration)演化期 t1 ( evolution)混合期tm (mixin

9、g)检测期t2(detection)。检测期完全对应于一维核磁共振的检测期,在对时间域t2进行Fourier变换后得到F2频率域的频率谱。二维核磁共振的关键是引入了第二个时间变量演化期 t1。当样品中核自旋被激发后,它以确定频率进动,并且这种进动将延续相当一段时间。在这个意义上讲,我们可以把核自旋体系看成有记忆能力的体系,Jeener就是利用这种记忆能力,通过检测期间接演化期中核自旋的行为。氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率

10、为60 MHz,磁感应强度是 14.092 Gs(14.09210-4 T),100 MHz23.486 Gs(23.48610-4 T),200 MHz46.973 Gs(46.97310-4 T)。600 MHz140.920 Gs(140.92010-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由

11、于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。 化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即B有效=B0(1-)=B0-B0=B0-B感应外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少

12、的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:射=B有效/2因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化

13、学位移。对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。 化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸

14、收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用来 表示,四甲基硅吸收峰的值为零,其峰右边的值为负,左边的值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,一般都应用相对值来表示,其定义为=(样-标)/仪106在式中

15、,样和标分别代表样品和标准化合物的共振频率,仪为操作仪器选用的频率。多数有机物的质子信号发生在010处,零是高场,10是低场。 需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。 化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。 电负性(诱导效应)电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。实例一: 电负性 C2.6 N3.0 O3.5 CCH3(0.771.88) NCH3(2.123.10) OCH3(3.244.02) 实例二: 电负性 Cl3.1 Br2.9 I2.6 CH3Cl(3.05)CH2Cl2(5.30)CHCl3(7.27) CH3Br(2.68) CH3I(2.16) 电负性对

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号