ch-8空间解析几何与向量代数

上传人:F****n 文档编号:97811561 上传时间:2019-09-06 格式:DOC 页数:40 大小:867.50KB
返回 下载 相关 举报
ch-8空间解析几何与向量代数_第1页
第1页 / 共40页
ch-8空间解析几何与向量代数_第2页
第2页 / 共40页
ch-8空间解析几何与向量代数_第3页
第3页 / 共40页
ch-8空间解析几何与向量代数_第4页
第4页 / 共40页
ch-8空间解析几何与向量代数_第5页
第5页 / 共40页
点击查看更多>>
资源描述

《ch-8空间解析几何与向量代数》由会员分享,可在线阅读,更多相关《ch-8空间解析几何与向量代数(40页珍藏版)》请在金锄头文库上搜索。

1、第八章 空间解析几何与向量代数 教学目的: 1、理解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。4、掌握平面方程和直线方程及其求法。5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。6、点到直线以及点到平面的距离。7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。8、了解空间曲线的参数方

2、程和一般方程。9、了解空间曲线在坐标平面上的投影,并会求其方程。教学重点: 1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算; 2、两个向量垂直和平行的条件; 3、平面方程和直线方程; 4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件; 5、点到直线以及点到平面的距离; 6、常用二次曲面的方程及其图形; 7、旋转曲面及母线平行于坐标轴的柱面方程; 8、空间曲线的参数方程和一般方程。教学难点: 1、向量积的向量运算及坐标运算; 2、平面方程和直线方程及其求法; 3、点到直线的距离; 4、二次曲面图形; 5、旋转曲面的方程;第一节 向量及其线性运算 一、向量概念 向量

3、: 在研究力学、物理学以及其他应用科学时, 常会遇到这样一类量, 它们既有大小, 又有方向. 例如力、力矩、位移、速度、加速度等, 这一类量叫做向量. 在数学上, 用一条有方向的线段(称为有向线段)来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的符号: 以A为起点、B为终点的有向线段所表示的向量记作. 向量可用粗体字母表示, 也可用上加箭头书写体字母表示, 例如, a、r、v、F或、. 自由向量: 由于一切向量的共性是它们都有大小和方向, 所以在数学上我们只研究与起点无关的向量, 并称这种向量为自由向量, 简称向量. 因此, 如果向量a和b的大小相等, 且方

4、向相同, 则说向量a和b是相等的, 记为a = b. 相等的向量经过平移后可以完全重合. 向量的模: 向量的大小叫做向量的模. 向量a、的模分别记为|a|、. 单位向量: 模等于1的向量叫做单位向量. 零向量: 模等于0的向量叫做零向量, 记作0或. 零向量的起点与终点重合, 它的方向可以看作是任意的. 二、向量的加法 1向量的加法 向量的加法: 设有两个向量a与b, 平移向量使b的起点与a的终点重合, 此时从a的起点到b的终点的向量c称为向量a与b的和, 记作a+b, 即c=a+b . 三角形法则: 上述作出两向量之和的方法叫做向量加法的三角形法则. 平行四边形法则: A B C A B C

5、 D 当向量a与b不平行时, 平移向量使a与b的起点重合, 以a、b为邻边作一平行四边形, 从公共起点到对角的向量等于向量a与b的和a+b. 向量的加法的运算规律: (1)交换律a+b=b+a; (2)结合律(a+b)+c=a+(b+c). 由于向量的加法符合交换律与结合律, 故n个向量a1, a2, , an(n 3)相加可写成 a1+a2+ +an, 并按向量相加的三角形法则, 可得n个向量相加的法则如下: 使前一向量的终点作为次一向量的起点, 相继作向量a1, a2, , an, 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即为所求的和. 负向量: 设a为一向量

6、, 与a的模相同而方向相反的向量叫做a的负向量, 记为-a. 向量的减法: 我们规定两个向量b与a的差为b-a=b+(-a). 即把向量-a加到向量b上, 便得b与a的差b-a. 特别地, 当b=a时, 有 a-a=a+(-a)=0. 显然, 任给向量及点O, 有 , 因此, 若把向量a与b移到同一起点O, 则从a的终点A向b的终点B所引向量便是向量b与a的差b-a . 三角不等式: 由三角形两边之和大于第三边的原理, 有|a+b|a|+|b|及|a-b|a|+|b|, 其中等号在b与a同向或反向时成立. 2向量与数的乘法 向量与数的乘法的定义: 向量a与实数l的乘积记作la, 规定la是一个

7、向量, 它的模|la|=|l|a|, 它的方向当l0时与a相同, 当l0时与a相反. 当l=0时, |la|=0, 即la为零向量, 这时它的方向可以是任意的. 特别地, 当l=1时, 有1a=a, (-1)a=-a. 运算规律: (1)结合律 l(ma)=m(la)=(lm)a; (2)分配律 (l+m)a=la+ma; l(a+b)=la+lb. 例1. 在平行四边形ABCD中, 设=a, =b. 试用a和b表示向量、, 其中M是平行四边形对角线的交点. 解 由于平行四边形的对角线互相平分, 所以A B C D M a+b, 即 -(a+b), 于是 (a+b). 因为, 所以(a+b).

8、 又因-a+b, 所以(b-a). 由于, 所以(a-b). 向量的单位化: 设a0, 则向量是与a同方向的单位向量, 记为ea. 于是a=|a|ea. 向量的单位化: 设a0, 则向量是与a同方向的单位向量, 记为ea. 于是a = | a | ea. 定理1 设向量a 0, 那么, 向量b平行于a的充分必要条件是: 存在唯一的实数l, 使 b = la. 证明: 条件的充分性是显然的, 下面证明条件的必要性. 设b / a. 取, 当b与a同向时l取正值, 当b与a反向时l取负值, 即b=la. 这是因为此时b与la同向, 且 |la|=|l|a|. 再证明数l的唯一性. 设b=la, 又

9、设b=ma, 两式相减, 便得 (l-m)a=0, 即|l-m|a|=0. 因|a|0, 故|l-m|=0, 即l=m. 给定一个点及一个单位向量就确定了一条数轴. 设点O及单位向量i确定了数轴Ox, 对于轴上任一点P, 对应一个向量, 由/i, 根据定理1, 必有唯一的实数x, 使=xi (实数x叫做轴上有向线段的值), 并知与实数x一一对应. 于是 点P向量= xi实数x , 从而轴上的点P与实数x有一一对应的关系. 据此, 定义实数x为轴上点P的坐标. 由此可知, 轴上点P的坐标为x的充分必要条件是 = xi . 三、空间直角坐标系 在空间取定一点O和三个两两垂直的单位向量i、j、k,

10、就确定了三条都以O为原点的两两垂直的数轴, 依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴), 统称为坐标轴. 它们构成一个空间直角坐标系, 称为Oxyz坐标系. 注: (1)通常三个数轴应具有相同的长度单位; (2)通常把x 轴和y轴配置在水平面上, 而z轴则是铅垂线; (3)数轴的的正向通常符合右手规则. 坐标面: 在空间直角坐标系中, 任意两个坐标轴可以确定一个平面, 这种平面称为坐标面. x轴及y轴所确定的坐标面叫做xOy面, 另两个坐标面是yOz面和zOx面. 卦限: 三个坐标面把空间分成八个部分, 每一部分叫做卦限, 含有三个正半轴的卦限叫做第一卦限, 它位于xOy面的上方. 在x

11、Oy面的上方, 按逆时针方向排列着第二卦限、第三卦限和第四卦限. 在xOy面的下方, 与第一卦限对应的是第五卦限, 按逆时针方向还排列着第六卦限、第七卦限和第八卦限. 八个卦限分别用字母I、II、III、IV、V、VI、VII、VIII表示. 向量的坐标分解式: 任给向量r, 对应有点M, 使. 以OM为对角线、三条坐标轴为棱作长方体, 有 , 设 , , , 则 . 上式称为向量r的坐标分解式, xi、yj、zk称为向量r沿三个坐标轴方向的分向量. 显然, 给定向量r, 就确定了点M及, , 三个分向量, 进而确定了x、y、z三个有序数; 反之, 给定三个有序数x、y、z也就确定了向量r与点

12、M. 于是点M、向量r与三个有序x、y、z之间有一一对应的关系 . 据此, 定义: 有序数x、y、z称为向量r(在坐标系Oxyz)中的坐标, 记作r=(x, y, z); 有序数x、y、z也称为点M(在坐标系Oxyz)的坐标, 记为M(x, y, z). 向量称为点M关于原点O的向径. 上述定义表明, 一个点与该点的向径有相同的坐标. 记号(x, y, z)既表示点M, 又表示向量. 坐标面上和坐标轴上的点, 其坐标各有一定的特征. 例如: 点M在yOz面上, 则x=0; 同相, 在zOx面上的点, y=0; 在xOy面上的点, z=0. 如果点M在x轴上, 则y=z=0; 同样在y轴上,有z

13、=x=0; 在z轴上 的点, 有x=y=0. 如果点M为原点, 则x=y=z=0. 四、利用坐标作向量的线性运算 设a=(ax, ay, az), b=(bx, by, bz)即 a=axi+ayj+azk, b=bxi+byj+bzk , 则 a+b=(axi+ayj+azk)+(bxi+byj+bzk) =(ax+bx)i+(ay+by)j+(az+bz)k =(ax+bx, ay+by, az+bz). a-b=(axi+ayj+azk)-(bxi+byj+bzk) =(ax-bx)i+(ay-by)j+(az-bz)k =(ax-bx, ay-by, az-bz). la=l(axi+ayj+azk) =(lax)i+(lay)j+(laz)k =(lax, lay, laz). 利用向量的坐标判断两个向量的平行: 设a=(ax, ay, az)0, b=(bx, by, bz), 向量b/ab=la , 即b/a(bx, by, bz)=l(ax, ay, az), 于是. 例2 求解以向量为未

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 办公文档 > 教学/培训

电脑版 |金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号